
Package ‘systemPipeR’
February 19, 2026

Type Package

Title systemPipeR: Workflow Environment for Data Analysis and Report
Generation

Version 2.16.3

Date 2025-01-02

Author Thomas Girke

Maintainer Thomas Girke <thomas.girke@ucr.edu>

biocViews Genetics, Infrastructure, DataImport, Sequencing, RNASeq,
RiboSeq, ChIPSeq, MethylSeq, SNP, GeneExpression, Coverage,
GeneSetEnrichment, Alignment, QualityControl, ImmunoOncology,
ReportWriting, WorkflowStep, WorkflowManagement

Description systemPipeR is a multipurpose data analysis workflow environment that uni-
fies R with command-line tools. It enables scientists to analyze many types of large- or small-
scale data on local or distributed computer systems with a high level of reproducibility, scalabil-
ity and portability. At its core is a command-line interface (CLI) that adopts the Common Work-
flow Language (CWL). This design allows users to choose for each analysis step the opti-
mal R or command-line software. It supports both end-to-end and partial execution of work-
flows with built-in restart functionalities. Efficient management of complex analysis tasks is ac-
complished by a flexible workflow control container class. Handling of large numbers of in-
put samples and experimental designs is facilitated by consistent sample annotation mecha-
nisms. As a multi-purpose workflow toolkit, systemPipeR enables users to run existing work-
flows, customize them or design entirely new ones while taking advan-
tage of widely adopted data structures within the Bioconductor ecosystem. Another impor-
tant core functionality is the generation of reproducible scientific analysis and technical re-
ports. For result interpretation, systemPipeR offers a wide range of plotting functional-
ity, while an associated Shiny App offers many useful functionalities for interactive result explo-
ration. The vignettes linked from this page include (1) a general introduction, (2) a descrip-
tion of technical details, and (3) a collection of workflow templates.

Depends R (>= 4.1.0), Rsamtools (>= 1.31.2), Biostrings, ShortRead (>=
1.37.1), methods

Imports GenomicRanges, SummarizedExperiment, ggplot2, yaml, stringr,
magrittr, S4Vectors, crayon, BiocGenerics, htmlwidgets

Suggests BiocStyle, knitr, rmarkdown, systemPipeRdata,
GenomicAlignments, grid, dplyr, testthat, rjson, annotate,
AnnotationDbi, kableExtra, GO.db, GenomeInfoDb, DT,
rtracklayer, limma, edgeR, DESeq2, IRanges, batchtools,
GenomicFeatures, txdbmaker, GenomeInfoDbData, VariantAnnotation
(>= 1.25.11)

1

2 Contents

VignetteBuilder knitr

SystemRequirements systemPipeR can be used to run external
command-line software (e.g. short read aligners), but the
corresponding tool needs to be installed on a system.

License Artistic-2.0

URL https://github.com/tgirke/systemPipeR

git_url https://git.bioconductor.org/packages/systemPipeR

git_branch RELEASE_3_22

git_last_commit d207fb0

git_last_commit_date 2026-01-02

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Contents
systemPipeR-package . 3
addAssay-methods . 4
alignStats . 5
catDB-class . 6
catmap . 8
check.output . 9
clusterRun . 10
config.param . 12
configWF . 13
countRangeset . 14
createParam . 15
cwlFilesUpdate . 18
EnvModules-class . 19
evalCode . 20
featureCoverage . 20
featuretypeCounts . 23
filterDEGs . 25
filterVars . 27
genFeatures . 29
GOHyperGAll . 31
importWF . 34
INTERSECTset-class . 36
LineWise-class . 37
listCmdTools . 40
loadWorkflow . 41
mergeBamByFactor . 43
moduleload . 44
olBarplot . 45
olRanges . 47
output_update . 48
overLapper . 49
plotfeatureCoverage . 52
plotfeaturetypeCounts . 54

https://github.com/tgirke/systemPipeR

systemPipeR-package 3

plotWF . 56
predORF . 59
preprocessReads . 61
printParam . 62
printParam2 . 63
readComp . 66
renderLogs . 67
renderReport . 68
returnRPKM . 69
runCommandline . 70
runDiff . 72
runWF . 73
run_DESeq2 . 75
run_edgeR . 76
sal2bash . 77
sal2rmd . 79
scaleRanges . 80
seeFastq . 81
showDF . 82
SPRproject . 83
subsetWF . 84
symLink2bam . 85
sysargs . 86
SYSargs-class . 87
SYSargs2-class . 89
SYSargsList . 92
SYSargsList-class . 93
systemArgs . 99
targets.as.df . 100
trimbatch . 101
tryCMD . 102
tryPath . 103
variantReport . 104
vennPlot . 106
VENNset-class . 109
writeTargets . 110
writeTargetsout . 111
writeTargetsRef . 112
write_SYSargsList . 113

Index 115

systemPipeR-package systemPipeR package for Workflow Environment

4 addAssay-methods

Description

The systemPipeR package provides a suite of R/Bioconductor for designing, building and running
end-to-end analysis workflows on local machines, HPC clusters and cloud systems, while generat-
ing at the same time publication quality analysis reports.

For detailed information on usage, see the package vignette, by typing vignette("systemPipeR"), or
more information on the project here: https://systempipe.org/spr

All software-related questions should be posted to the Bioconductor Support Site: https://support.bioconductor.org

The code can be viewed at the GitHub repository: https://github.com/tgirke/systemPipeR

Author(s)

Daniela Cassol, Tyler Backman, Thomas Girke

References

Backman TWH, Girke T (2016) systemPipeR: NGS workflow and report generation environment.
BMC Bioinformatics 17 (1). https://doi.org/10.1186/s12859-016-1241-0

addAssay-methods Extension accessor methods for SummarizedExperiment object

Description

Accessors for adding new data to the ’assay’ and ’metadata’ slot of a SummarizedExperiment object

Usage

addAssay(x, ...)
addMetadata(x, ...)

Arguments

x Object of class SummarizedExperiment.

... dots, name of the object.

Methods

addAssay signature(x = "SummarizedExperiment"): add new dataset to assays slot

addMetadata signature(x = "SummarizedExperiment"): add new dataset to metadata slot

Author(s)

Daniela Cassol

alignStats 5

alignStats Alignment statistics

Description

Generate data frame containing important read alignment statistics such as the total number of reads
in the FASTQ files, the number of total alignments, as well as the number of primary alignments in
the corresponding BAM files.

Usage

alignStats(args, fqpaths, pairEnd = TRUE, output_index = 1, subset="FileName1")

Arguments

args Object of class SYSargs or SYSargs2 or named character vector with BAM
files PATH and the elements names should be the sampleID.

fqpaths named character vector with raw FASTQ files PATH and the names should
be the sampleID. Required when class(args) is "character".

pairEnd logical. For pair-end libraries, select TRUE.

output_index A numeric index positions of the file in SYSargs2 object, slot output. Default
is output_index=1.

subset subset are the variables defined in the param.yml file, for example "FileName1".

Value

data.frame with alignment statistics.

Author(s)

Thomas Girke

See Also

clusterRun and runCommandline and output_update

Examples

##
Examples with \code{SYSargs2} object
##
Construct SYSargs2 object from CWl param, CWL input, and targets files
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targetspath, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF

names(WF); modules(WF); targets(WF)[1]; cmdlist(WF)[1:2]; output(WF)

Not run:

6 catDB-class

Execute SYSargs2 on single machine
WF <- runCommandline(args=WF, make_bam=TRUE)

Alignment stats
read_statsDF <- alignStats(WF, subset="FileName")
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")

End(Not run)

###
Examples with \code{SYSargs} object
###
Construct SYSargs object from param and targets files
param <- system.file("extdata", "hisat2.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); modules(args); cores(args); outpaths(args); sysargs(args)

Not run:
Execute SYSargs on single machine
runCommandline(args=args)

Alignment stats
read_statsDF <- alignStats(args)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")

End(Not run)

catDB-class Class "catDB"

Description

Container for storing mappings of genes to annotation categories such as gene ontologies (GO),
pathways or conserved sequence domains. The catmap slot stores a list of data.frames providing
the direct assignments of genes to annotation categories (e.g. gene-to-GO mappings); catlist is
a list of lists of all direct and indirect associations to the annotation categories (e.g. genes
mapped to a pathway); and idconv allows to store a lookup-table for converting identifiers (e.g.
array feature ids to gene ids).

Objects from the Class

Objects can be created by calls of the form new("catDB", ...).

Slots

catmap: Object of class "list" list of data.frames

catlist: Object of class "list" list of lists

idconv: Object of class "ANY" list of data.frames

catDB-class 7

Methods

catlist signature(x = "catDB"): extracts data from catlist slot

catmap signature(x = "catDB"): extracts data from catmap slot

coerce signature(from = "list", to = "catDB"): as(list, "catDB")

idconv signature(x = "catDB"): extracts data from idconv slot

names signature(x = "catDB"): extracts slot names

show signature(object = "catDB"): summary view of catDB objects

Author(s)

Thomas Girke

See Also

makeCATdb, GOHyperGAll, GOHyperGAll_Subset, GOHyperGAll_Simplify, GOCluster_Report,
goBarplot

Examples

showClass("catDB")
Not run:
Obtain annotations from BioMart
library("biomaRt")
listMarts() # To choose BioMart database
listMarts(host = "plants.ensembl.org")
m <- useMart("plants_mart", host = "plants.ensembl.org")
listDatasets(m)
m <- useMart("plants_mart", dataset = "athaliana_eg_gene", host = "plants.ensembl.org")
listAttributes(m) # Choose data types you want to download
go <- getBM(attributes = c("go_id", "tair_locus", "namespace_1003"), mart = m)
go <- go[go[, 3] != "",]
go[, 3] <- as.character(go[, 3])
go[go[, 3] == "molecular_function", 3] <- "F"
go[go[, 3] == "biological_process", 3] <- "P"
go[go[, 3] == "cellular_component", 3] <- "C"
go[1:4,]

dir.create("./data/GO", recursive = TRUE)
write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote = FALSE, row.names = FALSE,

col.names = FALSE, sep = "\t")

Create catDB instance (takes a while but needs to be done only once)
catdb <- makeCATdb(myfile = "data/GO/GOannotationsBiomart_mod.txt", lib = NULL, org = "",

colno = c(1, 2, 3), idconv = NULL)
catdb
save(catdb, file = "data/GO/catdb.RData")
load("data/GO/catdb.RData")

End(Not run)

8 catmap

catmap catDB accessor methods

Description

Methods to access information from catDB object.

Usage

catmap(x)

Arguments

x object of class catDB

Value

various outputs

Author(s)

Thomas Girke

Examples

Not run:
Obtain annotations from BioMart
m <- useMart("ENSEMBL_MART_PLANT"); listDatasets(m)
m <- useMart("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")
listAttributes(m) # Choose data types you want to download
go <- getBM(attributes=c("go_accession", "tair_locus",

"go_namespace_1003"), mart=m)
go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3])
write.table(go, "GOannotationsBiomart_mod.txt", quote=FALSE,

row.names=FALSE, col.names=FALSE, sep="\t")

Create catDB instance (takes a while but needs to be done only once)
catdb <- makeCATdb(myfile="GOannotationsBiomart_mod.txt", lib=NULL,

org="", colno=c(1,2,3), idconv=NULL)
catdb

Access methods for catDB
catmap(catdb)$D_MF[1:4,]
catlist(catdb)$L_MF[1:4]
idconv(catdb)

End(Not run)

check.output 9

check.output Checking if the outfiles files exist

Description

This function returns a data.frame indicating the number of existing files and how many files are
missing.

Usage

check.output(sysargs, type="data.frame")
check.outfiles(sysargs, type="data.frame")

Arguments

sysargs object of class SYSargs2 or SYSargsList.
type return object option. It can be data.frame or list.

Value

data.frame or list containing all the outfiles file information.

Author(s)

Daniela Cassol and Thomas Girke

See Also

- SYSargs2-class

- SYSargsList-class

Examples

Construct SYSargs2 object
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF
Check output
check.output(WF)
check.output(WF, "list")

Construct SYSargsList object
sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl", input_file="example/example.yml",

dir_path = system.file("extdata/cwl", package="systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

Check outfiles
check.outfiles(sal)

10 clusterRun

clusterRun Submit command-line tools to cluster

Description

Submits non-R command-line software to queueing/scheduling systems of compute clusters using
run specifications defined by functions similar to runCommandline. clusterRun can be used with
most queueing systems since it is based on utilities from the batchtools package which supports
the use of template files (*.tmpl) for defining the run parameters of the different schedulers. The
path to the *.tmpl file needs to be specified in a conf file provided under the conffile argument.

Usage

clusterRun(args,
FUN = runCommandline,
more.args = list(args = args, make_bam = TRUE),
conffile = ".batchtools.conf.R",
template = "batchtools.slurm.tmpl",
Njobs,
runid = "01",
resourceList)

Arguments

args Object of class SYSargs or SYSargs2.

FUN Accepts functions such as runCommandline(args, ...) where the args argu-
ment is mandatory and needs to be of class SYSargs or SYSargs2.

more.args Object of class list, which provides the arguments that control the FUN func-
tion.

conffile Path to conf file (default location ./.batchtools.conf.R). This file contains
in its simplest form just one command, such as this line for the Slurm scheduler:
cluster.functions <- makeClusterFunctionsSlurm(template="batchtools.slurm.tmpl").
For more detailed information visit this page: https://mllg.github.io/batchtools/index.html

template The template files for a specific queueing/scheduling systems can be down-
loaded from here: https://github.com/mllg/batchtools/tree/master/inst/templates.
Slurm, PBS/Torque, and Sun Grid Engine (SGE) templates are provided.

Njobs Interger defining the number of cluster jobs. For instance, if args contains 18
command-line jobs and Njobs=9, then the function will distribute them accross 9
cluster jobs each running 2 command-line jobs. To increase the number of CPU
cores used by each process, one can do this under the corresonding argument of
the command-line tool, e.g. -p argument for Tophat.

runid Run identifier used for log file to track system call commands. Default is "01".

resourceList List for reserving for each cluster job sufficient computing resources including
memory (Megabyte), number of nodes, CPU cores, walltime (minutes), etc. For
more details, one can consult the template file for each queueing/scheduling
system.

clusterRun 11

Value

Object of class Registry, as well as files and directories created by the executed command-line
tools.

Author(s)

Daniela Cassol and Thomas Girke

References

For more details on batchtools, please consult the following page: https://github.com/mllg/batchtools/

See Also

clusterRun replaces the older functions getQsubargs and qsubRun.

Examples

###
Examples with \code{SYSargs} object
###
Construct SYSargs object from param and targets files
param <- system.file("extdata", "hisat2.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); modules(args); cores(args); outpaths(args); sysargs(args)

Not run:
Execute SYSargs on multiple machines of a compute cluster. The following
example uses the conf and template files for the Slurm scheduler. Please
read the instructions on how to obtain the corresponding files for other schedulers.
file.copy(system.file("extdata", ".batchtools.conf.R", package="systemPipeR"), ".")
file.copy(system.file("extdata", "batchtools.slurm.tmpl", package="systemPipeR"), ".")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, FUN = runCommandline,

more.args = list(args = args, make_bam = TRUE),
conffile=".batchtools.conf.R",
template="batchtools.slurm.tmpl",
Njobs=18, runid="01",
resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)
file.exists(outpaths(args))

End(Not run)

##
Examples with \code{SYSargs2} object
##
Construct SYSargs2 object from CWl param, CWL input, and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)

12 config.param

WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF
names(WF); modules(WF); targets(WF)[1]; cmdlist(WF)[1:2]; output(WF)

Not run:
Execute SYSargs2 on multiple machines of a compute cluster. The following
example uses the conf and template files for the Slurm scheduler. Please
read the instructions on how to obtain the corresponding files for other schedulers.
file.copy(system.file("extdata", ".batchtools.conf.R", package="systemPipeR"), ".")
file.copy(system.file("extdata", "batchtools.slurm.tmpl", package="systemPipeR"), ".")
resources <- list(walltime=120, ntasks=1, ncpus=4, memory=1024)
reg <- clusterRun(WF, FUN = runCommandline,

more.args = list(args = WF, make_bam = TRUE),
conffile=".batchtools.conf.R",
template="batchtools.slurm.tmpl",
Njobs=18, runid="01", resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)

Updates the path in the object \code{output(WF)}
WF <- output_update(WF, dir=FALSE, replace=TRUE, extension=c(".sam", ".bam"))

Alignment stats
read_statsDF <- alignStats(WF)
read_statsDF <- cbind(read_statsDF[targets$FileName,], targets)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE,

quote=FALSE, sep="\t")

End(Not run)

config.param Adding param file

Description

Replace or adding a input configuration setting at "YML" param file

Usage

config.param(input_file = NULL, param, file = "default", silent = FALSE)

Arguments

input_file a list of parameters, param file path, or SYSargs2 object.

param object of class list, expressing the values and names to be added or replace at
the command-line definition or the configuration files.

file name and path of the new file. If set to default, the name of the write file will
have the pattern: <Date-Time>_<OriginalName>.yml. If set to append, the
param information it will be append on the same file.

silent if set to TRUE, all messages returned by the function will be suppressed.

configWF 13

Author(s)

Daniela Cassol

Examples

Not run:
input_file <- system.file("extdata", "cwl/hisat2/hisat2-mapping-se.yml", package="systemPipeR")
param <- list(thread=10, fq=list(class="File", path="./results2"))
input <- config.param(input_file=input_file, param, file="default")

End(Not run)

configWF Workflow Steps Selection

Description

This function allows the user to control of which step of the workflow will be run and the generation
of the new RMarkdown.

Usage

configWF(x, input_steps = "ALL", exclude_steps = NULL, silent = FALSE, ...)

Arguments

x object of class SYSargsList.

input_steps a character vector of all steps desires to preserve on the output file. Default
is ALL. It can be used the symbol ":" to select many steps in sequence, for
example, input_steps=1:5.2, from step 1 to step 5.2. The symbol "." repre-
sents the substeps and symbol "," is used to separate selections. Jump from
a major step to sub-step is supported, but if a major step is selected/excluded,
all sub-steps of this major step will be selected/excluded. Repeatedly selected
steps will only result in a unique step.It is recommended to put major steps in
input_steps, like 1:4, 6:8, 10; and unwanted sub-steps in exclude_step,
like 1.1, 3.1.1-3.1.3, 6.5. Reverse selecting is supported e.g. 10:1.

exclude_steps a character vector of all steps desires to remove on the output file.

silent if set to TRUE, all messages returned by the function will be suppressed.

... Additional arguments to pass on to configWF().

Author(s)

Daniela Cassol

14 countRangeset

Examples

Not run:
library(systemPipeRdata)
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
script <- system.file("extdata/workflows/rnaseq", "systemPipeRNAseq.Rmd", package="systemPipeRdata")
SYSconfig <- initProject(projPath="./", targets=targets, script=script, overwrite=TRUE, silent=TRUE)

sysargslist <- configWF(x=sysargslist)

End(Not run)

countRangeset Read counting for several range sets

Description

Convenience function to perform read counting iteratively for serveral range sets, e.g. peak range
sets or feature types. Internally, the read counting is performed with the summarizeOverlaps
function from the GenomicAlignments package. The resulting count tables are directly saved to
files.

Usage

countRangeset(bfl, args, outfiles=NULL, format="tabular", ...)

Arguments

bfl BamFileList object containing paths to one or more BAM files.

args An instance of SYSargs or SYSargs2 constructed from a targets file where
the first column (targetsin(args) or targets.as.df(targets(args))) con-
tains the paths to the tabular range data files (e.g. peak ranges) used for count-
ing. Another possibily is named character vector with the paths to the tabular
range data files and the elements names should be the sampleID.

outfiles Default is NULL. When args is an object of named character vector class,
outfile argument is required. Named character vector with the paths to the
resulting count tables and the elements names should be the sampleID.

format Format of input range files. Currently, supported are tabular or bed. If tabular
is selected then the input range files need to contain the proper column titles to
coerce with as(..., "GRanges") to GRanges objects after importing them with
read.delim. The latter is the case for the peak files (*peaks.xls) generated by
the MACS2 software.

... Arguments to be passed on to internally used summarizeOverlaps function.

Value

Named character vector containing the paths from outpaths(args) to the resulting count table
files.

Author(s)

Thomas Girke

createParam 15

See Also

summarizeOverlaps

Examples

Paths to BAM files
param <- system.file("extdata", "bowtieSE.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args_bam <- systemArgs(sysma=param, mytargets=targets)
bfl <- BamFileList(outpaths(args_bam), yieldSize=50000, index=character())

Not run:
##
Examples with \code{SYSargs2} object
##
Construct SYSargs2 object
SYSargs2 with paths to range data and count files
dir_path <- system.file("extdata/cwl/count_rangesets", package="systemPipeR")
args <- loadWF(targets = "targets_macs.txt", wf_file = "count_rangesets.cwl",

input_file = "count_rangesets.yml", dir_path = dir_path)
args <- renderWF(args, inputvars = c(FileName = "_FASTQ_PATH1_", SampleName = "_SampleName_"))

Iterative read counting
countDFnames <- countRangeset(bfl, args, mode="Union", ignore.strand=TRUE)

##
Examples with \code{SYSargs} object
##
Construct SYSargs object
SYSargs with paths to range data and count files
args <- systemArgs(sysma="param/count_rangesets.param", mytargets="targets_macs.txt")

Iterative read counting
countDFnames <- countRangeset(bfl, args, mode="Union", ignore.strand=TRUE)
writeTargetsout(x=args, file="targets_countDF.txt", overwrite=TRUE)

End(Not run)

createParam createParam

Description

The constructor function creates an SYSargs2 S4 class object from command-line string. Also, the
function creates and saves the CWL param files. The latest storages all the parameters required
for running command-line software, following the standard and specification defined on Common
Workflow Language (CWL).

Usage

createParamFiles(commandline, cwlVersion = "v1.1", class = "CommandLineTool",
results_path = "./results", module_load = "baseCommand",
file = "default", syntaxVersion = "v1",

16 createParam

writeParamFiles = TRUE, confirm = FALSE,
overwrite = FALSE, silent = FALSE)

writeParamFiles(sysargs, file = "default", overwrite = TRUE, silent = FALSE,
syntaxVersion = "v1")

Arguments

commandline string. Original command-line to create the CWL files from. Please see Details
for more information.

cwlVersion string. The version of the Common Workflow Language. More information
here: https://www.commonwl.org/.

class character. Name of Common Workflow Language Description class. The fol-
lowing is accepted: CommandLineTool.

results_path Path to the results folder. Default is results.

module_load string, Name of software to load by Environment Modules system. Default is
"baseCommand", which creates a subfolder and two files: *.cwl and *.yml at
./param/cwl/.

file character. Name and path of output files. If set to "default" then the name of the
output files will have the pattern <software>.cwl and <software>.yml, where
<software> will be what baseCommand(x) returns, when x is an object of class
SYSargs2. Also, it creates a subfolder at ./param/cwl/ with name <software>.

syntaxVersion character. One of "v1" or "v2", what CWL parsing syntax version to use. De-
fault is to use the old version. The V2 version comes with more feature support,
but has more syntax restrictions. See details.

writeParamFiles

logical. If set to TRUE, it will write to file the content of the CWL files:*.cwl
and *.yml. Default is TRUE.

confirm If set to FALSE and in an interactive section, it will prompt a question to proceed
or not.

overwrite logical. If set to TRUE, existing files of the same name will be overwritten.
Default is FALSE.

silent logical. If set to TRUE, all messages returned by the function will be suppressed.
Default is FALSE.

sysargs Object of class SYSargs2. Output from the createParamFiles function.

Details

Version 1 syntax:
- First line of the command-line object will be treated as the baseCommand;
- For argument lines (starting from the second line), any word before the first space with leading
‘-‘ or ‘–‘ in each will be treated as a prefix, like -S or --min. Any line without this first word will
be treated as no prefix;
- All defaults are placed inside <...>;
- First argument is the input argument type. F for "File", int for integer, string for string;
- Optional: use the keyword out followed the type with a , comma separation to indicate if this
argument is also a CWL output;
- Then, use : to separate keywords and default values, any non-space value after the : will be
treated as the default value;

createParam 17

- If any argument has no default value, just a flag, like --verbose, there no need to add any <...>.
- The \ is not required, however for consistency it is recommended to add.

Version 2 syntax:
- First line of the command-line object will be treated as the baseCommand;
- Each line specifies one argument and its default value.
- Each line is composed with exact 2 ; to seprate 3 columns.
- Text before first ; will be will used as prefix/names. If it starts with keyword "p:", anything
after "p:" and before the first ; will be used as prefix, and the name of this position will be the
prefix but with leading dash(s) "-", "-" removed. If there is any duplication, a number index will
be added to the end. If there is no keyword "p:" before first ;, all text before first ; will be the
name.
- If there is keyword "p:" before first ; but nothing before and after the second ;, this position
will be treated as CWL argument instead of input.
- Text between first and second ; is type. Must be one of File, Directory, string, int, double, float,
long, boolean.
- Text after second ; and before \ or end of the line is the default value. If it starts with keyword
"out" or "stdout", this position will also be added to outputs or standard output.
- There is only 1 position with "stdout" allowed and usually it is the last position arguement.
- Ending with "\" is recommended but not required.

Value

SYSargs2 object

Author(s)

Le Zhang and Daniela Cassol

References

For more details on CWL, please consult the following page: https://www.commonwl.org/

See Also

writeParamFiles printParam subsetParam replaceParam renameParam appendParam loadWorkflow
renderWF showClass("SYSargs2")

Examples

syntax version 1 example
command <- "
hisat2 \

-S <F, out: ./results/M1A.sam> \
-x <F: ./data/tair10.fasta> \
-k <int: 1> \
-min-intronlen <int: 30> \
-max-intronlen <int: 3000> \
-threads <int: 4> \
-U <F: ./data/SRR446027_1.fastq.gz> \
--verbose

"
cmd <- createParam(command, writeParamFiles=FALSE)

18 cwlFilesUpdate

cmdlist(cmd)

syntax version 2 example
command2 <- '
mycmd2 \

p: -s; File; sample1.txt \
p: -s; File; sample2.txt \
p: --c; ; \
p: -o; File; out: myout.txt \
ref_genome; File; a.fasta \
p: --nn; int; 12 \
mystdout; File; stdout: abc.txt

'
cmd2 <- createParam(command2, syntaxVersion = "v2", writeParamFiles=FALSE)
cmdlist(cmd2)

cwlFilesUpdate Update CWL description files

Description

Function to sync and download the most updated CWL description files from the systemPipeR
package.

Usage

cwlFilesUpdate(destdir, force = FALSE, verbose = TRUE)

Arguments

destdir a character string with the directory path where the param are stored.

force logical. Force the download of the CWL files.

verbose logical. The setting FALSE suppresses all print messages.

Author(s)

Daniela Cassol

Examples

Not run:
destdir <- "param/"
cwlFilesUpdate(destdir)

End(Not run)

EnvModules-class 19

EnvModules-class Class "EnvModules"

Description

The function module enables use of the Environment Modules system (http://modules.sourceforge.net/)
from within the R environment. By default the user’s login shell environment (ie. bash -l) will be
used to initialize the current session. The module function can also; load or unload specific soft-
ware, list all the loaded software within the current session, and list all the applications available for
loading from the module system. Lastly, the module function can remove all loaded software from
the current session.

Objects from the Class

Objects can be created by calls of the form new("EnvModules", ...).

Slots

available_modules: Object of class "list" ~~

loaded_modules: Object of class "list" ~~

default_modules: Object of class "list" ~~

modulecmd: Object of class "character" ~~

Methods

[signature(x = "EnvModules"): ...

[[signature(x = "EnvModules", i = "ANY", j = "missing"): ...

[[<- signature(x = "EnvModules"): ...

$ signature(x = "EnvModules"): ...

available_modules signature(x = "EnvModules"): ...

coerce signature(from = "EnvModules", to = "list"): ...

coerce signature(from = "list", to = "EnvModules"): ...

default_modules signature(x = "EnvModules"): ...

EnvModules signature(x = "EnvModules"): ...

loaded_modules signature(x = "EnvModules"): ...

modulecmd signature(x = "EnvModules"): ...

names signature(x = "EnvModules"): ...

show signature(object = "EnvModules"): ...

Author(s)

Jordan Hayes and Daniela Cassol

Examples

showClass("EnvModules")

20 featureCoverage

evalCode Toggles option eval on the RMarkdown files

Description

Function to evaluate (eval=TRUE) or not evaluate (eval=FALSE) R chunk codes in the Rmarkdown
file. This function does not run the code, just toggles between TRUE or FALSE the option eval and
writes out a new file with the chosen option.

Usage

evalCode(infile, eval = TRUE, output)

Arguments

infile name and path of the infile file, format Rmd.

eval whether to evaluate the code and include its results. The default is TRUE.

output name and path of the output file. File format Rmd.

Value

Writes Rmarkdown file containing the exact copy of the infile file with the option choose on the
eval argument. It will be easy to toggle between run all the R chunk codes or not.

Author(s)

Daniela Cassol

Examples

library(systemPipeRdata)
file <- system.file("extdata/workflows/rnaseq", "systemPipeRNAseq.Rmd", package="systemPipeRdata")
evalCode(infile=file, eval=FALSE, output=file.path(tempdir(), "test.Rmd"))

featureCoverage Genome read coverage by transcript models

Description

Computes read coverage along single and multi component features based on genomic alignments.
The coverage segments of component features are spliced to continuous ranges, such as exons
to transcripts or CDSs to ORFs. The results can be obtained with single nucleotide resolution
(e.g. around start and stop codons) or as mean coverage of relative bin sizes, such as 100 bins
for each feature. The latter allows comparisons of coverage trends among transcripts of variable
length. The results can be obtained for single or many features (e.g. any number of transcritpts) at
once. Visualization of the coverage results is facilitated by a downstream plotfeatureCoverage
function.

featureCoverage 21

Usage

featureCoverage(bfl, grl, resizereads = NULL, readlengthrange = NULL, Nbins = 20,
method = mean, fixedmatrix, resizefeatures, upstream, downstream,
outfile, overwrite = FALSE)

Arguments

bfl Paths to BAM files provided as BamFileList object. The name slot of the BAM
files will be used for naming samples in the results.

grl Genomic ranges provided as GRangesList typically generated form txdb in-
stances with operations like: cdsBy(txdb, "tx") or exonsBy(txdb, "tx").
Single component features will be processed the same way as multi component
features.

resizereads Positive integer defining the length alignments should be resized to prior to the
coverage calculation. NULL will omit the resizing step.

readlengthrange

Positive integer of length 2 determining the read length range to use for the cov-
erage calculation. Reads falling outside of the specified length range will be ex-
cluded from the coverage calculation. For instance, readlengthrange=c(30:40)
will base the coverage calculation on reads between 30 to 40 bps. Assigning
NULL will skip this filtering step.

Nbins Single positive integer defining the number of segments the coverage of each
feature should be binned into in order to obtain coverage summaries of constant
length, e.g. for plotting purposes.

method Defines the summary statistics to use for binning. The default is method=mean.

fixedmatrix If set to TRUE, a coverage matrix with single nucleotide resolution will be re-
turned for any number of transcripts centered around precise anchor points in a
genome annotation, such a stop/start codons or transcription start sites. For in-
stance, a matrix with coverage information 20bps upstream and downstream of
the stop/start codons can be obtained with fixedmatrix=TRUE, upstream=20,
downstream=20 along with a grl instance containing the CDS exon ranges re-
quired for this operation, e.g. generated with cdsBy(txdb, "tx").

resizefeatures Needs to be set to TRUE when fixedmatrix=TRUE. Internally, this will use the
systemPipeR::.resizeFeature function to extend single and multi compo-
nent features at their most left and most right end coordinates. The correspond-
ing extension values are specified under the upstream and downstream argu-
ments.

upstream Single positive integer specifying the upstream extension length relative to the
orientation of each feature in the genome. More details are given above.

downstream Single positive integer specifying the downstream extension length relative to
the orientation of each feature in the genome. More details are given above.

outfile Default NULL omits writing of the results to a file. If a file name is specified then
the results are written to a tabular file. If bfl contains the paths to several BAM
files then the results will be appended to the same file where the first column
specifies the sample labels. Redirecting the results to file is particularly useful
when processing large files of many sample where computation times can be
significant.

overwrite If set to TRUE any existing file assigned to outfile will be overwritten.

22 featureCoverage

Value

The function allows to return the following four distinct outputs. The settings to return these in-
stances are illustrated below in the example section.

(A) data.frame containing binned coverage where rows are features and columns
coverage bins. The first four columns contain (i) the sample names, (ii) the num-
ber of total aligned reads in the corresponding BAM files (useful for normaliza-
tion), (iii) the feature IDs, (iv) strand of the coverage. All following columns are
numeric and contain the actual coverage data for the sense and antisense strand
of each feature.

(B) data.frame containing coverage with single nucleotide resolution around an-
chor points such as start and stop codons. The two matrix components are
appended column-wise. To clearly distinguish the two data components, they
are separated by a specialty column containing pipe characters. The first four
columns are the same as described under (A). The column title for the anchor
point is 0. For instance, if the features are CDSs then the first 0 corresponds to
the first nucleotide of the start codon and the second 0 to the last nucleotide of
the stop codon. Upstream and downstream positions are indicated by negative
and positive column numbers, respectively.

(C) data.frame containing combined results of (A) and (B) where the first set of
columns contains to the coverage around the start codons, the second one the
binned coverage of the CDSs and the third one the coverage around the stop
codons separated by the same pipe columns mentioned under (B).

(D) Rle list containing the nucleotide level coverage of each feature

Author(s)

Thomas Girke

See Also

plotfeatureCoverage

Examples

Construct SYSargs2 object from param and targets files
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targetspath, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args

Not run:
Features from sample data of systemPipeRdata package
library(txdbmaker)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targetspath, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))

featuretypeCounts 23

args <- runCommandline(args, make_bam = TRUE, dir = TRUE)
outpaths <- subsetWF(args , slot="output", subset=1, index=1)
file.exists(outpaths)

(A) Generate binned coverage for two BAM files and 4 transcripts
grl <- cdsBy(txdb, "tx", use.names=TRUE)
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage.xls", overwrite=TRUE)

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(B) Coverage matrix upstream and downstream of start/stop codons
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=TRUE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage_up_down.xls", overwrite=TRUE)

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(C) Combined matrix for both binned and start/stop codon
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=TRUE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage_binned.xls", overwrite=TRUE)

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(D) Rle coverage objects one for each query feature
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage_query.xls", overwrite=TRUE)

End(Not run)

featuretypeCounts Plot read distribution across genomic features

Description

Counts how many reads in short read alignment files (BAM format) overlap with entire annotation
categories. This utility is useful for analyzing the distribution of the read mappings across feature
types, e.g. coding versus non-coding genes. By default the read counts are reported for the sense and
antisense strand of each feature type separately. To minimize memory consumption, the BAM files
are processed in a stream using utilities from the Rsamtools and GenomicAlignment packages. The
counts can be reported for each read length separately or as a single value for reads of any length.
Subsequently, the counting results can be plotted with the associated plotfeaturetypeCounts
function.

Usage

featuretypeCounts(bfl, grl, singleEnd = TRUE, readlength = NULL, type = "data.frame")

24 featuretypeCounts

Arguments

bfl BamFileList object containing the paths to the target BAM files stored on disk.
Note, memory-efficient processing is achieved by streaming through BAM files
rather than reading entire files into memory at once. The maximum number of
alignments to process in each iteration is determined by the yieldSize value
passed on to the BamFileList function. For details see ?BamFileList.

grl GRangesList object containing in each list component the range set of a feature
type. Typically, this object is generated with the genFeatures function. For
details see the example section below and ?genFeatures.

singleEnd Specifies whether the targets BAM files contain alignments for single-end (SE)
or paired-end read data. TRUE is for SE and FALSE for PE data.

readlength Integer vector specifying the read length values for which to report counts sep-
arately. If readlength=NULL the length of the reads will be ignored resulting
in a single value for each feature type and strand. Note, for PE data the two
reads in a pair may differ in length. In those cases the length of the two reads
is averaged and then assigned to the corresponding length category after round-
ing the mean length to the closest integer. This is not an ideal solution but a
reasonable compromise for the purpose of the summary statistics generated by
featuretypeCounts.

type Determines whether the results are returned as data.frame (type="data.frame")
or as list (type="list"). Each list component contains the counting results
for one BAM file and is named after the corresponding sample. The data.frame
result contains this sample assignment information in a separate column.

Value

The results are returned as data.frame or list of data.frames. For details see above under types
argument. The result data.frames contain the following columns in the given order:

SampleName Sample names obtained from BamFileList object.

Strand Sense or antisense strand of read mappings.

Featuretype Name of feature type provided by GRangesList object. Note, the total number
of aligned reads is reported under the special feature type ’N_total_aligned’.
This value is useful for scaling/normalization purposes in plots, e.g. counts per
million reads.

Featuretypelength

Total genomic length of each reduced feature type in bases. This value is useful
to normalize the read counts by genomic length units, e.g. in plots.

Subsequent columns

Counts for reads of any length or for individual read lengths.

Author(s)

Thomas Girke

See Also

plotfeaturetypeCounts, genFeatures

filterDEGs 25

Examples

Construct SYSargs2 object from param and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args

Not run:
Run alignments
args <- runCommandline(args, dir = FALSE, make_bam = TRUE)
outpaths <- subsetWF(args, slot = "output", subset = 1, index = 1)

Features from sample data of systemPipeRdata package
library(txdbmaker)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")
feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000, downstream=0, verbose=TRUE)

Generate and plot feature counts for specific read lengths
fc <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat, singleEnd=TRUE, readlength=c(74:76,99:102), type="data.frame")
p <- plotfeaturetypeCounts(x=fc, graphicsfile="featureCounts.pdf", graphicsformat="pdf", scales="fixed", anyreadlength=FALSE)

Generate and plot feature counts for any read length
fc2 <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat, singleEnd=TRUE, readlength=NULL, type="data.frame")
p2 <- plotfeaturetypeCounts(x=fc2, graphicsfile="featureCounts2.pdf", graphicsformat="pdf", scales="fixed", anyreadlength=TRUE)

End(Not run)

filterDEGs Filter and plot DEG results

Description

Filters and plots DEG results for a given set of sample comparisons. The gene idenifiers of all
(i) Up_or_Down, (ii) Up and (iii) Down regulated genes are stored as separate list components,
while the corresponding summary statistics, stored in a fourth list component, is plotted in form of
a stacked bar plot.

Usage

filterDEGs(degDF, filter, plot = TRUE)

Arguments

degDF data.frame generated by run_edgeR

filter Named vector with filter cutoffs of format c(Fold=2, FDR=1) where Fold refers
to the fold change cutoff (unlogged) and FDR to the p-value cutoff.

plot Allows to turn plotting behavior on and off with default set to TRUE.

26 filterDEGs

Details

Currently, there is no community standard available how to calculate fold changes (here logFC) of
genomic ranges, such as gene or feature ranges, to unambiguously refer to them as features with
increased or decreased read abundandce; or in case of gene expression experiments to up or down
regulated genes, respectively. To be consistent within systemPipeR, the corresponding functions,
such as filterDEGs, use here the following definition. Genomic ranges with positive logFC values
are classified as up and those with negative logFC values as down. This means if a comparison
among two samples a and b is specified in the corresponding targets file as a-b then the feature
with a positive logFC has a higher _normalized_ read count value in sample a than in sample b,
and vice versa. To inverse this assignment, users want to change the specification of their chosen
sample comparison(s) in the targets file accordingly, e.g. change a-b to b-a. Alternatively, one can
swap the column order of the matrix assigned to the cmp argument of the run_edgeR or run_DESeq2
functions. Users should also be aware that for logFC values close to zero (noise range), the direction
of the fold change (sign of logFC) can be very sensitive to minor differences in the normalization
method, while this assignment is much more robust for more pronounced changes or higher absolute
logFC values.

Value

Returns list with four components

UporDown List of up or down regulated gene/transcript indentifiers meeting the chosen filter
settings for all comparisons defined in data frames pval and log2FC.

Up Same as above but only for up regulated genes/transcript.

Down Same as above but only for down regulated genes/transcript.

Author(s)

Thomas Girke

See Also

run_edgeR

Examples

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countfile <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- read.delim(countfile, row.names=1)
edgeDF <- run_edgeR(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")
pval <- edgeDF[, grep("_FDR$", colnames(edgeDF)), drop=FALSE]
fold <- edgeDF[, grep("_logFC$", colnames(edgeDF)), drop=FALSE]
DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=10))
names(DEG_list)
DEG_list$Summary

filterVars 27

filterVars Filter VCF files

Description

Convenience function for filtering VCF files based on user definable quality parameters. The func-
tion imports each VCF file into R, applies the filtering on an internally generated VRanges object
and then writes the results to a new VCF file.

Usage

filterVars(files, filter, varcaller="gatk", organism,
out_dir="results")

Arguments

files named character vector with paths of the input VCF files.

filter Character vector of length one specifying the filter syntax that will be applied to
the internally created VRanges object.

varcaller Character vector of length one specifying the variant caller used for generating
the input VCFs. Currently, this argument can be assigned ’gatk’, ’bcftools’ or
’vartools’.

organism Character vector specifying the organism name of the reference genome.

out_dir Character vector of a results directory name. Default is results.

Value

Output files in VCF format. Their paths can be obtained with outpaths(args) or output(args).

Author(s)

Thomas Girke

See Also

variantReport combineVarReports, varSummar

Examples

Alignment with BWA (sequentially on single machine)
param <- system.file("extdata", "bwa.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
sysargs(args)[1]

Not run:
library(VariantAnnotation)
system("bwa index -a bwtsw ./data/tair10.fasta")
bampaths <- runCommandline(args=args)

Alignment with BWA (parallelized on compute cluster)
resources <- list(walltime="20:00:00", nodes=paste0("1:ppn=", cores(args)), memory="10gb")

28 filterVars

reg <- clusterRun(args, conffile=".BatchJobs.R", template="torque.tmpl", Njobs=18, runid="01",
resourceList=resources)

Variant calling with GATK
The following creates in the inital step a new targets file
(targets_bam.txt). The first column of this file gives the paths to
the BAM files created in the alignment step. The new targets file and the
parameter file gatk.param are used to create a new SYSargs
instance for running GATK. Since GATK involves many processing steps, it is
executed by a bash script gatk_run.sh where the user can specify the
detailed run parameters. All three files are expected to be located in the
current working directory. Samples files for gatk.param and
gatk_run.sh are available in the subdirectory ./inst/extdata/ of the
source file of the systemPipeR package.
writeTargetsout(x=args, file="targets_bam.txt")
system("java -jar CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
system("java -jar /opt/picard/1.81/CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
args <- systemArgs(sysma="gatk.param", mytargets="targets_bam.txt")
resources <- list(walltime="20:00:00", nodes=paste0("1:ppn=", 1), memory="10gb")
reg <- clusterRun(args, conffile=".BatchJobs.R", template="torque.tmpl", Njobs=18, runid="01",

resourceList=resources)
writeTargetsout(x=args, file="targets_gatk.txt")

Variant calling with BCFtools
The following runs the variant calling with BCFtools. This step requires in
the current working directory the parameter file sambcf.param and the
bash script sambcf_run.sh.
args <- systemArgs(sysma="sambcf.param", mytargets="targets_bam.txt")
resources <- list(walltime="20:00:00", nodes=paste0("1:ppn=", 1), memory="10gb")
reg <- clusterRun(args, conffile=".BatchJobs.R", template="torque.tmpl", Njobs=18, runid="01",

resourceList=resources)
writeTargetsout(x=args, file="targets_sambcf.txt")

Filtering of VCF files generated by GATK
args <- systemArgs(sysma="filter_gatk.param", mytargets="targets_gatk.txt")
filter <- "totalDepth(vr) >= 2 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==4"
filter <- "totalDepth(vr) >= 20 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==6"
filterVars(args, filter, varcaller="gatk", organism="A. thaliana")
writeTargetsout(x=args, file="targets_gatk_filtered.txt")

Filtering of VCF files generated by BCFtools
args <- systemArgs(sysma="filter_sambcf.param", mytargets="targets_sambcf.txt")
filter <- "rowSums(vr) >= 2 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
filter <- "rowSums(vr) >= 20 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
filterVars(args, filter, varcaller="bcftools", organism="A. thaliana")
writeTargetsout(x=args, file="targets_sambcf_filtered.txt")

Annotate filtered variants from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

Annotate filtered variants from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))

genFeatures 29

variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

Combine results from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_gatk.xls", quote=FALSE, row.names=FALSE, sep="\t")

Combine results from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_sambcf.xls", quote=FALSE, row.names=FALSE, sep="\t")

Summary for GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
write.table(varSummary(args), "./results/variantStats_gatk.xls", quote=FALSE, col.names = NA, sep="\t")

Summary for BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
write.table(varSummary(args), "./results/variantStats_sambcf.xls", quote=FALSE, col.names = NA, sep="\t")

Venn diagram of variants
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_gatk <- overLapper(varlist, type="vennsets")
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_bcf <- overLapper(varlist, type="vennsets")
vennPlot(list(vennset_gatk, vennset_bcf), mymain="", mysub="GATK: red; BCFtools: blue", colmode=2, ccol=c("blue", "red"))

End(Not run)

genFeatures Generate feature ranges from TxDb

Description

Function to generate a variety of feature types from TxDb objects using utilities provided by the
GenomicFeatures package. The feature types are organized per gene and can be returned on that
level in their non-reduced or reduced form.

Currently, supported features include intergenic, promoter, intron, exon, cds, 5'/3'UTR and
different transcript types. The latter contains as many transcript types as available in the tx_type
column when extracting transcripts from TxDb objects as follows: transcripts(txdb, c("tx_name",
"gene_id", "tx_type"))

Usage

genFeatures(txdb, featuretype = "all", reduce_ranges, upstream = 1000, downstream = 0, verbose = TRUE)

Arguments

txdb TxDb object

30 genFeatures

featuretype Feature types can be specified by assigning a character vector containing any
of the following: c("tx_type", "promoter", "intron", "exon", "cds", "fiveUTR",
"threeUTR", "intergenic"). The default all is a shorthand to select all supported
features.

reduce_ranges If set to TRUE the feature ranges will be reduced on the gene level. As a result
overlapping feature components of the same type and from the same gene will
be merged to a single range, e.g. two overlapping exons from the same gene
are merged to one. Intergenic ranges are not affected by this setting. Note, all
reduced feature types are labeled with the suffix ’_red’.

upstream Defines for promoter features the number of bases upstream from the transcrip-
tion start site.

downstream Defines for promoter features the number of bases downstream from the tran-
scription start site.

verbose verbose=FALSE turns off all print messages.

Value

The results are returned as a GRangesList where each component is a GRanges object containing
the range set of each feature type. Intergenic ranges are assigned unique identifiers and recorded
in the featuretype_id column of the metadata block. For this the ids of their adjacent genes are
concatenated with two underscores as separator. If the adjacent genes overlap with other genes then
their identifiers are included in the id string as well and separated by a single underscore.

Author(s)

Thomas Girke

See Also

transcripts and associated TxDb accessor functions from the GenomicFeatures package.

Examples

Sample from txdbmaker package
library(txdbmaker)
gffFile <- system.file("extdata", "GFF3_files", "a.gff3", package="txdbmaker")
txdb <- makeTxDbFromGFF(file=gffFile, format="gff3", organism="Solanum lycopersicum")
feat <- genFeatures(txdb, featuretype="all", reduce_ranges=FALSE, upstream=1000, downstream=0)

List extracted feature types
names(feat)

Obtain feature lists by genes, here for promoter
split(feat$promoter, unlist(mcols(feat$promoter)$feature_by))

Return all features in single GRanges object
unlist(feat)

Not run:
Sample from systemPipeRdata package
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")
feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000, downstream=0)

GOHyperGAll 31

End(Not run)

GOHyperGAll GO term enrichment analysis for large numbers of gene sets

Description

To test a sample population of genes for over-representation of GO terms, the core function GOHyperGAll
computes for all nodes in the three GO networks (BP, CC and MF) an enrichment test based on the
hypergeometric distribution and returns the corresponding raw and Bonferroni corrected p-values.
Subsequently, a filter function supports GO Slim analyses using default or custom GO Slim cat-
egories. Several convenience functions are provided to process large numbers of gene sets (e.g.
clusters from partitioning results) and to visualize the results.

Note: GOHyperGAll provides similar utilities as the GOHyperG function in the GOstats package.
The main difference is that GOHyperGAll simplifies processing of large numbers of gene sets, as
well as the usage of custom array-to-gene and gene-to-GO mappings.

Usage

Generate gene-to-GO mappings and store as catDB object
makeCATdb(myfile, lib = NULL, org = "", colno = c(1, 2, 3), idconv = NULL,

rootUK=FALSE)

Enrichment function
GOHyperGAll(catdb, gocat = "MF", sample, Nannot = 2)

GO slim analysis
GOHyperGAll_Subset(catdb, GOHyperGAll_result, sample = test_sample,

type = "goSlim", myslimv)

Reduce GO term redundancy
GOHyperGAll_Simplify(GOHyperGAll_result, gocat = "MF", cutoff = 0.001, correct = TRUE)

Batch analysis of many gene sets
GOCluster_Report(catdb, setlist, id_type = "affy", method = "all", CLSZ = 10,

cutoff = 0.001, gocats = c("MF", "BP", "CC"), myslimv = "default",
correct = TRUE, recordSpecGO = NULL, ...)

Bar plot of GOCluster_Report results
goBarplot(GOBatchResult, gocat)

Arguments

myfile File with gene-to-GO mappings. Sample files can be downloaded from geneon-
tology.org (http://geneontology.org/GO.downloads.annotations.shtml) or from BioMart
as shown in example below.

colno Column numbers referencing in myfile the three target columns containing
GOID, GeneID and GOCAT, in that order.

org Optional argument. Currently, the only valid option is org="Arabidopsis" to
get rid of transcript duplications in this particular annotation.

32 GOHyperGAll

lib If the gene-to-GO mappings are obtained from a *.db package from Biocon-
ductor then the package name can be specified under the lib argument of the
sampleDFgene2GO function.

idconv Optional id conversion data.frame

catdb catdb object storing mappings of genes to annotation categories. For details,
see ?"SYSargs-class".

rootUK If the argument rootUK is set to TRUE then the root nodes are treated as terminal
nodes to account for the new unknown terms.

sample character vector containing the test set of gene identifiers

Nannot Defines the minimum number of direct annotations per GO node from the sam-
ple set to determine the number of tested hypotheses for the p-value adjustment.

gocat Specifies the GO type, can be assigned one of the following character values:
"MF", "BP" and "CC".

GOHyperGAll_result

data.frame generated by GOHyperGAll

type The function GOHyperGAll_Subset subsets the GOHyperGAll results by directly
assigned GO nodes or custom goSlim categories. The argument type can be
assigned the values goSlim or assigned.

myslimv optional argument to provide custom goSlim vector

cutoff p-value cutoff for GO terms to show in result data.frame

correct If TRUE the function will favor the selection of terminal (informationich) GO
terms that have at the same time a large number of sample matches.

setlist list of character vectors containing gene IDs (or array feature IDs). The
names of the list components correspond to the set labels, e.g. DEG compar-
isons or cluster IDs.

id_type specifies type of IDs in input, can be assigned gene or affy

method Specifies analysis type. Current options are all for GOHyperGAll, slim for
GOHyperGAll_Subset or simplify for GOHyperGAll_Simplify.

CLSZ minimum gene set (cluster) size to consider. Gene sets below this cutoff will be
ignored.

gocats Specifies GO type, can be assigned the values "MF", "BP" and "CC".

recordSpecGO argument to report in the result data.frame specific GO IDs for any of the 3
ontologies disregarding whether they meet the specified p-value cutoff, e.g:
recordSpecGO=c("GO:0003674", "GO:0008150", "GO:0005575")

GOBatchResult data.frame generated by GOCluster_Report

... additional arguments to pass on

Details

GOHyperGAll_Simplify: The result data frame from GOHyperGAll will often contain several con-
nected GO terms with significant scores which can complicate the interpretation of large sample
sets. To reduce this redundancy, the function GOHyperGAll_Simplify subsets the data frame by
a user specified p-value cutoff and removes from it all GO nodes with overlapping children sets
(OFFSPRING), while the best scoring nodes are retained in the result data.frame.

GOCluster_Report: performs the three types of GO term enrichment analyses in batch mode:
GOHyperGAll, GOHyperGAll_Subset or GOHyperGAll_Simplify. It processes many gene sets (e.g.
gene expression clusters) and returns the results conveniently organized in a single result data frame.

GOHyperGAll 33

Value

makeCATdb generates catDB object from file.

Author(s)

Thomas Girke

References

This workflow has been published in Plant Physiol (2008) 147, 41-57.

See Also

GOHyperGAll_Subset, GOHyperGAll_Simplify, GOCluster_Report, goBarplot

Examples

Not run:

Obtain annotations from BioMart
listMarts() # To choose BioMart database
m <- useMart("ENSEMBL_MART_PLANT"); listDatasets(m)
m <- useMart("ENSEMBL_MART_PLANT", dataset="athaliana_eg_gene")
listAttributes(m) # Choose data types you want to download
go <- getBM(attributes=c("go_accession", "tair_locus",

"go_namespace_1003"), mart=m)
go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3])
write.table(go, "GOannotationsBiomart_mod.txt", quote=FALSE,

row.names=FALSE, col.names=FALSE, sep="\t")

Create catDB instance (takes a while but needs to be done only once)
catdb <- makeCATdb(myfile="GOannotationsBiomart_mod.txt", lib=NULL, org="",

colno=c(1,2,3), idconv=NULL)
catdb

Create catDB from Bioconductor annotation package
catdb <- makeCATdb(myfile=NULL, lib="ath1121501.db", org="",

colno=c(1,2,3), idconv=NULL)

AffyID-to-GeneID mappings when working with AffyIDs
affy2locusDF <- systemPipeR:::.AffyID2GeneID(map = "ftp://ftp.arabidopsis.org/home/tair/Microarrays/Affymetrix/affy_ATH1_array_elements-2010-12-20.txt",

download=TRUE)
catdb_conv <- makeCATdb(myfile="GOannotationsBiomart_mod.txt", lib=NULL, org="",

colno=c(1,2,3), idconv=list(affy=affy2locusDF))
systemPipeR:::.AffyID2GeneID(catdb=catdb_conv,

affyIDs=c("244901_at", "244902_at"))

Next time catDB can be loaded from file
save(catdb, file="catdb.RData")
load("catdb.RData")

Perform enrichment test on single gene set
test_sample <- unique(as.character(catmap(catdb)$D_MF[1:100,"GeneID"]))
GOHyperGAll(catdb=catdb, gocat="MF", sample=test_sample, Nannot=2)[1:20,]

GO Slim analysis by subsetting results accordingly

34 importWF

GOHyperGAll_result <- GOHyperGAll(catdb=catdb, gocat="MF", sample=test_sample, Nannot=2)
GOHyperGAll_Subset(catdb, GOHyperGAll_result, sample=test_sample, type="goSlim")

Reduce GO term redundancy in 'GOHyperGAll_results'
simplifyDF <- GOHyperGAll_Simplify(GOHyperGAll_result, gocat="MF",

cutoff=0.001, correct=T)
Returns the redundancy reduced data set.
data.frame(GOHyperGAll_result[GOHyperGAll_result[,1]

Batch Analysis of Gene Clusters
testlist <- list(Set1=test_sample)
GOBatchResult <- GOCluster_Report(catdb=catdb, setlist=testlist, method="all",

id_type="gene", CLSZ=10, cutoff=0.001,
gocats=c("MF", "BP", "CC"),

recordSpecGO=c("GO:0003674", "GO:0008150", "GO:0005575"))

Plot 'GOBatchResult' as bar plot
goBarplot(GOBatchResult, gocat="MF")

End(Not run)

importWF Import R Markdown file as workflow

Description

Import R Markdown file as workflow. Each R code chunk will be set as a step in the workflow. This
operation requires a few extra settings on the R Markdown chunk options, to include a particular
code chunk in the workflow analysis. Please check Details.

Usage

importWF(
sysargs, file_path, ignore_eval = TRUE,
update = FALSE, confirm = FALSE,
check_tool = !update,
check_module = check_tool,
verbose = TRUE

)

Arguments

sysargs SYSargsList empty object. More information on Details.

file_path string, file path of the workflow file.

ignore_eval logical, treat all R chunks’ eval option as TRUE in workflow Rmd file even if
some chunks have eval=FALSE.

update logical, If you have ever changed the template and want to sync new changes,
turn TRUE to update the workflow. This function will find the difference between
old template and this new template, update line number records, update prepro-
cessing code, and try to import new steps. The updated template is useful in
renderReport() function.

importWF 35

confirm logical, Only useful when you combine update = TRUE, some questions will be
asked during update. Changing this to TRUE would skip these questions and
directly say "Yes" to all answers. Useful in non-interactive mode. Default is to
say "No" in non-interactive mode.

check_tool logical, whether to check all required tools by this workflow are in PATH (callable).
It uses the listCmdTools function to perform the check. The default is the re-
verse of update. It means if it is the first importing the workflow, tools and
modules will be checked. If it is updating the existing workflow, tools will not
be checked.

check_module logical, whether to check all required modules are available. To do so, a modular
system has be to installed. If no modular system, this check will be skipped, even
if check_module = TRUE. It uses the listCmdModules function to perform the
check. Check the help of module to know more about modular system.

verbose logical, print out verbose message while function running.

Details

To include a particular code chunk from the R Markdown file in the workflow analysis, please use
the following code chunk options:

- spr = 'r': for code chunks with R code lines; - spr = 'sysargs': for code chunks with an
‘SYSargsList‘ object; - spr.dep = <StepName>: for specify the previous dependency. If this op-
tions is not found, it will automaticly add the previous step.

For spr = 'sysargs', the last object assigned needs to be the SYSargsList. If the spr flag is not
found, the R chunk will not be included in the workflow.

It is required to start a project using SPRproject() function, and use the object to populate the
steps from R Markdown file.

Value

importWF will return an SYSargsList object.

Author(s)

Le Zhang and Daniela Cassol

See Also

SYSargsList renderReport

Examples

file_path <- system.file("extdata/spr_simple_lw.Rmd", package="systemPipeR")
sal <- SPRproject(overwrite = TRUE)
sal <- importWF(sal, file_path)

36 INTERSECTset-class

INTERSECTset-class Class "INTERSECTset"

Description

Container for storing standard intersect results created by the overLapper function. The setlist
slot stores the original label sets as vectors in a list; intersectmatrix organizes the label sets
in a present-absent matrix; complexitylevels represents the number of comparisons considered
for each comparison set as vector of integers; and intersectlist contains the standard intersect
vectors.

Objects from the Class

Objects can be created by calls of the form new("INTERSECTset", ...).

Slots

setlist: Object of class "list": list of vectors

intersectmatrix: Object of class "matrix": binary matrix

complexitylevels: Object of class "integer": vector of integers

intersectlist: Object of class "list": list of vectors

Methods

as.list signature(x = "INTERSECTset"): coerces INTERSECTset to list

coerce signature(from = "list", to = "INTERSECTset"): as(list, "INTERSECTset")

complexitylevels signature(x = "INTERSECTset"): extracts data from complexitylevels slot

intersectlist signature(x = "INTERSECTset"): extracts data from intersectlist slot

intersectmatrix signature(x = "INTERSECTset"): extracts data from intersectmatrix slot

length signature(x = "INTERSECTset"): returns number of original label sets

names signature(x = "INTERSECTset"): extracts slot names

setlist signature(x = "INTERSECTset"): extracts data from setlist slot

show signature(object = "INTERSECTset"): summary view of INTERSECTset objects

Author(s)

Thomas Girke

See Also

overLapper, vennPlot, olBarplot, VENNset-class

LineWise-class 37

Examples

showClass("INTERSECTset")

Sample data
setlist <- list(A=sample(letters, 18), B=sample(letters, 16),

C=sample(letters, 20), D=sample(letters, 22),
E=sample(letters, 18), F=sample(letters, 22))

Create VENNset
interset <- overLapper(setlist[1:5], type="intersects")
class(interset)

Accessor methods for VENNset/INTERSECTset objects
names(interset)
setlist(interset)
intersectmatrix(interset)
complexitylevels(interset)
intersectlist(interset)

Coerce VENNset/INTERSECTset object to list
as.list(interset)

LineWise-class Class "LineWise"

Description

S4 class container for storing R-based code for a workflow step. LineWise class instances are
constructed by the LineWise function, based on the R-based code, step name, and dependency
tree. When the container is built from the R Markdown, using importWF function, two other slots
are populated: codeChunkStart and rmdPath. codeChunkStart will store the first line of each R
chunk, and rmdPath will store the R Markdown file path.

Usage

Constructor

LineWise(code, step_name = "default", codeChunkStart = integer(),
rmdPath = character(), dependency="",
run_step = "mandatory",
run_session = "management",
run_remote_resources = NULL)

Arguments

code R code separated either by a semi-colon (\;), or by a newline, and enclosed by
braces ({ }).

step_name character. Step name needs to be unique and is required when appending this
step to the workflow.

codeChunkStart integer. R Markdown code chunk line start. This element will be populated
when the object is built by importWF.

38 LineWise-class

rmdPath character. Path of R Markdown file used by importWF.

dependency character. Dependency tree, required when appending this step to the workflow.
Character name of a previous step in the workflow. Default is empty string "".

run_step character. If the step has "mandatory" or "optional" flag for the execution.

run_session character. If the step has "management" or "compute" flag for the execution.
run_remote_resources

List for reserving for each cluster job sufficient computing resources includ-
ing memory (Megabyte), number of nodes, CPU cores, walltime (minutes), etc.
It is necessary two aditional files: conffile and template. conffile is the
path to conf file (default location ./.batchtools.conf.R). This file contains
in its simplest form just one command, such as this line for the Slurm scheduler:
cluster.functions <- makeClusterFunctionsSlurm(template="batchtools.slurm.tmpl").
For more detailed information visit this page: https://mllg.github.io/batchtools/index.html
template The template files for a specific queueing/scheduling systems can be
downloaded from here: https://github.com/mllg/batchtools/tree/master/inst/templates.
Slurm, PBS/Torque, and Sun Grid Engine (SGE) templates are provided

Objects from the Class

Objects can be created by calls of the form new("LineWise", ...).

Slots

codeLine: Object of class "expression" storing R-based code.

codeChunkStart: Object of class "interger" storing start line from the rmdPath file, when the
"LineWise" is built from R Markdown.

stepName: Object of class "character" storing step name.

dependency: Object of class "list" storing dependency tree.

status: Object of class "list" storing status steps.

files: Object of class "list" storing file for R Markdown file and the file containing stdout and
stderr after running the R-based code.

runInfo: Object of class "list" storing all the runInfo information of the workflow

Functions and Methods

See ’Usage’ for details on invocation.

Constructor:

LineWise: Returns a LineWise object.

Accessors:

codeLine Printing method for the CodeLine slot.

codeChunkStart Extract start line of the R Markdown R chunk.

rmdPath Extract Rmarkdown file path.

stepName Extract the step name.

dependency Extract the dependency tree.

status Extract status of the step.

files Extract log file path storing stdout and stderr after running step.

LineWise-class 39

appendCodeLine<- Replacement method for append a R code line.

replaceCodeLine<- Replacement method for replace a R code line.

Methods:

[Return a new LineWise object made of the selected R code lines.

[[Extract the slot information from LineWine object.

[[<- Replacement method for LineWine slots.

$ Extract slots elements by name.

length Extract number of R-based code lines.

names Extract slot names.

show Summary view of LineWise elements.

coerce signature(from = "LineWise", to = "list")as(LineWise, "list")

coerce signature(from = "list", to = "LineWise")as(list, "LineWise")

linewise Coerce back to list as(LineWise, "list")

Author(s)

Daniela Cassol

See Also

SYSargsList

Examples

showClass("LineWise")
lw <- LineWise(code = {

log_out <- log(10)
},
step_name = "R_log")

codeLine(lw)

ImportWF option
file_path <- system.file("extdata/spr_simple_lw.Rmd", package="systemPipeR")
sal <- SPRproject(overwrite = TRUE)
file_path <- "../inst/extdata/spr_simple_lw.Rmd"
sal <- importWF(sal, file_path)
sal <- runWF(sal)
lw2 <- sal$stepsWF[[2]]
lw2
names(lw2)
length(lw2)

Accessors
codeLine(lw2)
codeChunkStart(lw2)
rmdPath(lw2)
stepName(lw2)
dependency(lw2)
status(lw2)
files(lw2)

40 listCmdTools

Replacement
appendCodeLine(lw2, after = 0) <- "log <- log(10)"
codeLine(lw2)
replaceCodeLine(lw2, 1) <- "plot(iris)"
codeLine(lw2)

Coerce
lw2 <- linewise(lw2) ## OR lw2 <- as(lw2, "list")
lw2 <- as(lw2, "LineWise")

listCmdTools List/check the existence of command-line tools of a workflow

Description

These functions list/check whether required command-line tools/modules are installed in the PATH
and are callable.

Usage

listCmdTools(sal, check_path = FALSE, check_module = FALSE)

listCmdModules(sal, check_module = FALSE)

Arguments

sal SPR workflow object in SYSargsList class.

check_path logical, whether to check if the required tools are in PATH.

check_module logical, whether to check if the required modules are installed.

Details

Both functions by default will not check the existence of tools or modules. The default is to list the
requirement.

Value

Both functions print out the list/check results as dataframe. The first column is workflow step names
that require certain tools/modules. The second column is the tool/module names. The third column
is logical, TRUE for the existence of the tool in PATH/modular system, if check_path = TRUE or
check_module = TRUE. Otherwise, the third column will be NA.

In the case of both check_path = TRUE, check_module = TRUE for listCmdTools, the returned
dataframe is still results for tool PATH checking but not module checking results. If one wish to
obtain the module checking results, please use listCmdModules.

When the current workflow has no command-line (SYSargs) step, or there is no module required,
or there is no modular system installed, the return will be NULL.

These two functions are automatically performed when importWF is called.

Author(s)

Le Zhang

loadWorkflow 41

See Also

importWF module

Examples

See examples of `importWF`

loadWorkflow Constructs SYSargs2 object from CWL param and targets files

Description

The constructor functions create an SYSargs2 S4 class object from three input files: a CWL param
and input files, and one simple tabular or yml file, a targets file. The latter is optional for
workflow steps lacking input files. TheCWL param provides all the parameters required for running
command-line software, following the standard and specification defined on Common Workflow
Language (CWL). The input file provides additional information for the command-line, allowing
each sample level input/outfile operation uses its own SYSargs2 instance. In the targets file users
could provide the paths to the initial sample input files (e.g. FASTQ) along with sample labels, and
if appropriate biological replicate and contrast information for controlling differential abundance
analyses.

The renderWF function populates all the command-line for each sample in each step of the par-
ticular workflow. Each sample level input/outfile operation uses its own SYSargs2 instance. The
output of SYSargs2 define all the expected output files for each step in the workflow, which usually
it is the sample input for the next step in an SYSargs2 instance. By chaining several SYSargs2
steps together one can construct complex workflows involving many sample-level input/output file
operations with any combination of command-line or R-based software. Between different in-
stances, this connectivity is established by `appendStep<-` method. Please check more details
from SYSargsList-class class.

Usage

loadWorkflow(targets = NULL, wf_file, input_file, dir_path = "param/cwl", id = "SampleName")

renderWF(WF, inputvars = NULL)

updateWF(WF, write.yaml=FALSE, name.yaml="default", new_targets=NULL,
new_targetsheader=NULL, inputvars=NULL, silent=FALSE)

Arguments

targets either the path to targets file or an object of SummarizedExperiment class.
The targets file can be either a simple tabular or yml file. Also, it is possible
to assign NULL to run the pipeline without the ’targets’ file. This can be useful
for running specific workflows that do not require input files.

wf_file name and path to CWL parameters file.

input_file name and path to input parameters file.

dir_path path to the parameters directory with the wf_file and input_file files. It is
recommended to keep both files in the same directory.

https://www.commonwl.org/
https://www.commonwl.org/

42 loadWorkflow

id A column from targets file, which will be used as an id for each one of the
samples. It is required to be unique.

WF Object of class SYSargs2, generated by loadWF .

inputvars named character vector. Variables defined in the input file that matches the
column names defined in the targets file.

write.yaml logical. If set to TRUE, it will write to file the content of the CWL files: *.yml.
Default is FALSE.

name.yaml name and path to input parameters file, if write.yaml is set to TRUE. Default
value will write a file at the same directory of dir_path appending to the file
name the current date.

new_targets new targets files as list. ’targets’ data.frame can be converted by targets.as.list
function. Default is NULL, and it will maintain the original.

new_targetsheader

character. New header/comment lines of targets file. Default is NULL, and it will
maintain the original.

silent If set to TRUE, all messages returned by the function will be suppressed.

Value

SYSargs2 object.

Author(s)

Daniela Cassol and Thomas Girke

See Also

showClass("SYSargs2")

Examples

Construct SYSargs2 object from CWl param, CWL input, and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF

If required to update the object
yamlinput(WF, "thread") <- 6L
WF <- updateWF(WF)
cmdlist(WF)[1]
yamlinput(WF)$thread

mergeBamByFactor 43

mergeBamByFactor Merge BAM files based on factor

Description

Merges BAM files based on sample groupings provided by a factor using internally the mergeBam
function from the Rsamtools package. The function also returns an updated SYSargs or SYSargs2
object containing the paths to the merged BAM files as well as to the unmerged BAM files if there
are any. All rows of merged parent samples are removed. When a named character vector is
provided as input, a data.frame with a target containing the paths to the merged BAM files as
output.
The functionality provided by mergeBamByFactor is useful for experiments where pooling of repli-
cates is advantageous to maximize the depth of read coverage, such as prior to peak calling in
ChIP-Seq or miRNA gene prediction experiments.

Usage

mergeBamByFactor(args, targetsDF = NULL, mergefactor = "Factor",
out_dir = file.path("results", "merge_bam"),
overwrite = FALSE, silent = FALSE, ...)

Arguments

args An instance of SYSargs or SYSargs2 constructed from a targets file where
the first column (targetsin(args) or targets.as.df(targets(args))) con-
tains the paths to the BAM files along with the column title FileName. Another
possibily is named character vector with BAM files PATH and the elements
names should be the sampleID.

targetsDF This argument is required when named character vector is provided as in-
put. Default is NULL. Object of class DFrame, and it can be obtained with
targetsWF(<SYSargsList>).

mergefactor factor containing the grouping information required for merging the BAM files
referenced in the first column of targetsin(args) or targets.as.df(targets(args)).
The default uses Factor column from the targets files as factor. The latter
merges BAM files for which replicates are specified in the Factor column.

out_dir The directory path to store merged bam files. Default uses "merge_bam" di-
rectory inside the results directory. directory not existing before running the
function is alllowed. It will be created while running.

overwrite If overwrite=FALSE existing BAM files of the same name will not be overwrit-
ten.

silent If silent=TRUE print statements will be suppressed.
... To pass on additional arguments to the internally used mergeBam function from

Rsamtools.

Value

The merged BAM files will be written to output files with the following naming convention: <first_BAM_file_name>_<grouping_label_of_factor>.<bam>.
In addition, the function returns an updated SYSargs or SYSargs2 object where all output file paths
contain the paths to the merged BAM files. When a named character vector is provided as input,
a data.frame with a target containing the paths to the merged BAM files as output. The rows of
the merged parent samples are removed and the rows of the unmerged samples remain unchanged.

44 moduleload

Author(s)

Thomas Girke

See Also

writeTargetsout, writeTargetsRef

Examples

Construct initial SYSargs object
targetspath <- system.file("extdata", "targets_chip.txt", package="systemPipeR")
parampath <- system.file("extdata", "bowtieSE.param", package="systemPipeR")
args <- systemArgs(sysma=parampath, mytargets=targetspath)

Not run:
After running alignmets (e.g. with Bowtie2) generate targets file
for the corresponding BAM files. The alignment step is skipped here.
writeTargetsout(x=args, file="targets_bam.txt", overwrite=TRUE)
args <- systemArgs(sysma=NULL, mytargets="targets_bam.txt")

Merge BAM files and return updated SYSargs object
args_merge <- mergeBamByFactor(args, overwrite=TRUE, silent=FALSE)

Export modified targets file
writeTargetsout(x=args_merge, file="targets_mergeBamByFactor.txt", overwrite=TRUE)

End(Not run)

moduleload Interface to allow full use of the Environment Modules system for Unix

Description

The function module enables use of the Environment Modules system (http://modules.sourceforge.net/)
from within the R environment. The user’s login shell environment (i.e. bash -l) will be used to
initialize the current session. The module function can also; load or unload specific software, list
all the loaded software within the current session, and list all the applications available for load-
ing from the module system. Lastly, the module function can remove all loaded software from the
current session.

Usage

module(action_type, module_name = NULL)
moduleload(module_name)
moduleUnload(module_name)
modulelist()
moduleAvail()
moduleClear()
moduleInit()

olBarplot 45

Arguments

action_type Name of the action to be executed as character vector. The following switches
are accepted: avail, list, init, load, unload, and clear.

module_name Name of software to load as character vector. Examples: "hisat2", "hisat2/2.1.0",
c("hisat2", "samtools").

Details

Partial failure would also result ‘FALSE‘, e.g. "load" two modules, one successful and the other
failed, then the return is ‘FALSE‘. For "unload" action will always return ‘TRUE‘ even if the
module is not loaded at all or not found.

Author(s)

Tyler Backman, Jordan Hayes and Thomas Girke

Examples

Not run:
List all available software from the module system
avail <- moduleAvail()

List loaded software in the current session
modulelist()

Example for loading a software into the shell environment
moduleload("hisat2")
moduleload("hisat2/2.2.1")

Example for removing software from the shell environment
moduleUnload("hisat2")

Clear all of the software from the shell's initialization files
moduleClear()

List and load all the software loaded in users default login shell into the
current session (default)
moduleInit()

End(Not run)

olBarplot Bar plot for intersect sets

Description

Generates bar plots of the intersect counts of VENNset and INTERSECTset objects generated by the
overLapper function. It is an alternative to Venn diagrames (e.g. vennPlot) that scales to larger
numbers of label sets. By default the bars in the plot are colored and grouped by complexity levels
of the intersect sets.

46 olBarplot

Usage

olBarplot(x, mincount = 0, complexity="default", myxlabel = "default", myylabel="Counts", mytitle = "default", ...)

Arguments

x Object of class VENNset or INTERSECTset.

mincount Sets minimum number of counts to consider in the bar plot. Default mincount=0
considers all counts.

complexity Allows user to limit the bar plot to specific complexity levels of intersects by
specifying the chosen ones with an integer vector. Default complexity="default"
considers all complexity levels.

myxlabel Defines label of x-axis.

myylabel Defines label of y-axis.

mytitle Defines main title of plot.

... Allows to pass on additional arguments to geom_bar from ggplot2. For in-
stance, fill=seq(along=vennlist(x)) or fill=seq(along=intersectlist(x))
will assign a different color to each bar, or fill="blue" will color all of them
blue. The default bar coloring is by complexity levels of the intersect sets.

Value

Bar plot.

Note

The functions provided here are an extension of the Venn diagram resources on this site: http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-
Venn-Diagrams

Author(s)

Thomas Girke

See Also

overLapper, vennPlot

Examples

Sample data: list of vectors with object labels
setlist <- list(A=sample(letters, 18), B=sample(letters, 16),

C=sample(letters, 20), D=sample(letters, 22),
E=sample(letters, 18), F=sample(letters, 22))

2-way Venn diagram
vennset <- overLapper(setlist[1:2], type="vennsets")
vennPlot(vennset)

3-way Venn diagram
vennset <- overLapper(setlist[1:3], type="vennsets")
vennPlot(vennset)

4-way Venn diagram
vennset <- overLapper(setlist[1:4], type="vennsets")

olRanges 47

vennPlot(list(vennset, vennset))

Pseudo 4-way Venn diagram with circles
vennPlot(vennset, type="circle")

5-way Venn diagram
vennset <- overLapper(setlist[1:5], type="vennsets")
vennPlot(vennset)

Alternative Venn count input to vennPlot (not recommended!)
counts <- sapply(vennlist(vennset), length)
vennPlot(counts)

6-way Venn comparison as bar plot
vennset <- overLapper(setlist[1:6], type="vennsets")
olBarplot(vennset, mincount=1)

Bar plot of standard intersect counts
interset <- overLapper(setlist, type="intersects")
olBarplot(interset, mincount=1)

Accessor methods for VENNset/INTERSECTset objects
names(vennset)
names(interset)
setlist(vennset)
intersectmatrix(vennset)
complexitylevels(vennset)
vennlist(vennset)
intersectlist(interset)

Coerce VENNset/INTERSECTset object to list
as.list(vennset)
as.list(interset)

Pairwise intersect matrix and heatmap
olMA <- sapply(names(setlist),

function(x) sapply(names(setlist),
function(y) sum(setlist[[x]] %in% setlist[[y]])))

olMA
heatmap(olMA, Rowv=NA, Colv=NA)

Presence-absence matrices for large numbers of sample sets
interset <- overLapper(setlist=setlist, type="intersects", complexity=2)
(paMA <- intersectmatrix(interset))
heatmap(paMA, Rowv=NA, Colv=NA, col=c("white", "gray"))

olRanges Identify Range Overlaps for IRanges and GRanges Object

Description

Function for identifying consensus peak among two peaks sets sharing a minimum relative overlap.

Usage

olRanges(query, subject, output = "gr")

48 output_update

Arguments

query Object of class GRanges, which is a vector of genomic locations and associated
annotations.

subject Object of class GRanges.

output By default "gr" returns any overlap with OL length information in an object of
class GRanges. Also, can returns an object of class data.frame with "df".

Author(s)

Thomas Girke

Examples

Sample Data Sets
grq <- GRanges(seqnames = Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)), ranges = IRanges::IRanges(seq(1, 100, by=10), end = seq(30, 120, by=10)), strand = Rle(strand(c("-", "+", "-")), c(1, 7, 2)))
grs <- shift(grq[c(2,5,6)], 5)
Run olRanges function
olRanges(query=grq, subject=grs, output="df")
olRanges(query=grq, subject=grs, output="gr")

output_update Updates the output files paths in the SYSargs2 object

Description

After executing all the command-lines by the runCommadline function, the output files can be cre-
ated in specific directories rather then results in a particular directory. Also, the runCommadline
function allows converting the SAM file outputs to sorted and indexed BAM files. Thus, the
output_update function allows updating the location of these files in the output of the SYSargs2
object.

Usage

output_update(args, dir = FALSE, dir.name = NULL, replace = FALSE, extension = NULL, make_bam=FALSE, del_sam=TRUE)

Arguments

args object of class SYSargs2.

dir assign TRUE to update the location of the output files in the args object accord-
ingly with the workflow name directory. Default is dir=FALSE.

dir.name if the results directory name is not specified in the input file, it is possible to
specify here the name. This argument is required if the path name return NULL
from the input file. Default is dir.name=NULL.

replace replace the extension for selected output files in the args object. Default is
replace=FALSE.

extension object of class "character" storing the current extension of the files and the
respective replacement. For example, runCommandline function by default au-
todetects SAM file outputs in the args object and create the BAM files. In
order to update the output of args object, the extension argument should be set:
extension = c(".sam", ".bam").

overLapper 49

make_bam Auto detects SAM file outputs and update them on the SYSargs2 object for
sorted and indexed BAM files. Default is make_bam=FALSE. This argument
should be used in integration with runCommandline function.

del_sam This option allows deleting the SAM files created when the make_BAM converts
the SAM files to sorted and indexed BAM files. Default is del_sam=TRUE.

Value

SYSargs2 object with output location files updated.

Author(s)

Daniela Cassol and Thomas Girke

See Also

To check directory name in the input file: yamlinput(WF)$results_path$path.

Examples

Construct SYSargs2 object from CWl param, CWL input, and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF
output(WF)

Not run:
runCommandline(args=WF, make_bam=TRUE)
Output paths update
WF <- output_update(WF, dir=FALSE, replace=TRUE, extension=c(".sam", ".bam"))

runCommandline(args=WF, make_bam=TRUE, dir=TRUE)
Output paths update
WF <- output_update(WF, dir=TRUE, replace=TRUE, extension=c(".sam", ".bam"))

End(Not run)

overLapper Set Intersect and Venn Diagram Functions

Description

Function for computing Venn intersects or standard intersects among large numbers of label sets
provided as list of vectors. The resulting intersect objects can be used for plotting 2-5 way
Venn diagrams or intersect bar plots using the functions vennPlot or olBarplot, respectively. The
overLapper function scales to 2-20 or more label vectors for Venn intersect calculations and to
much larger sample numbers for standard intersects. The different intersect types are explained
below under the definition of the type argument. The upper Venn limit around 20 label sets is
unavoidable because the complexity of Venn intersects increases exponentially with the label set

50 overLapper

number n according to this relationship: 2^n - 1. The current implementation of the plotting func-
tion vennPlot supports Venn diagrams for 2-5 label sets. To visually analyze larger numbers of
label sets, a variety of intersect methods are introduced in the olBarplot help file. These methods
are much more scalable than Venn diagrams, but lack their restrictive intersect logic.

Usage

overLapper(setlist, complexity = "default", sep = "_", cleanup = FALSE, keepdups = FALSE, type)

Arguments

setlist Object of class list where each list component stores a label set as vector and
the name of each label set is stored in the name slot of each list component. The
names are used for naming the label sets in all downstream analysis steps and
plots.

complexity Complexity level of intersects specified as integer vector. For Venn intersects
it needs to be assigned 1:length(setlist) (default). If complexity=2 the
function returns all pairwise intersects.

sep Character used to separate set labels.

cleanup If set to TRUE then all characters of the label sets are set to upper case, and
leading and trailing spaces are removed. The default cleanup=FALSE omits this
step.

keepdups By default all duplicates are removed from the label sets. The setting keepdups=TRUE
will retain duplicates by appending a counter to each entry.

type With the default setting type="vennsets" the overLapper function computes
the typical Venn intersects for the label sets provided under setlist. With the
setting type="intersects" the function will compute pairwise intersects (not
compatible with Venn diagrams). Venn intersects follow the typical ’only in’
intersect logic of Venn comparisons, such as: labels present only in set A, la-
bels present only in the intersect of A & B, etc. Due to this restrictive intersect
logic, the combined Venn sets contain no duplicates. In contrast to this, regu-
lar intersects follow this logic: labels present in the intersect of A & B, labels
present in the intersect of A & B & C, etc. This approach results usually in many
duplications of labels among the intersect sets.

Details

Additional Venn diagram resources are provided by the packages limma, gplots, vennerable,
eVenn and VennDiagram, or online resources such as shapes, Venn Diagram Generator and Venny.

Value

overLapper returns standard intersect and Venn intersect results as INTERSECTset or VENNset
objects, respectively. These S4 objects contain the following components:

setlist Original label sets accessible with setlist().
intersectmatrix

Present-absent matrix accessible with intersectmatrix(), where each overlap
set in the vennlist data component is labeled according to the label set names
provided under setlist. For instance, the composite name ’ABC’ indicates
that the entries are restricted to A, B and C. The seperator used for naming the
intersect sets can be specified under the sep argument.

overLapper 51

complexitylevels

Complexity levels accessible with complexitylevels().

vennlist Venn intersects for VENNset objects accessible with vennlist().

intersectlist Standard intersects for INTERSECTset objects accessible with intersectlist().

Note

The functions provided here are an extension of the Venn diagram resources on this site: http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-
Venn-Diagrams

Author(s)

Thomas Girke

References

See examples in ’The Electronic Journal of Combinatorics’: http://www.combinatorics.org/files/Surveys/ds5/VennSymmExamples.html

See Also

vennPlot, olBarplot

Examples

Sample data
setlist <- list(A=sample(letters, 18), B=sample(letters, 16),

C=sample(letters, 20), D=sample(letters, 22),
E=sample(letters, 18), F=sample(letters, 22))

2-way Venn diagram
vennset <- overLapper(setlist[1:2], type="vennsets")
vennPlot(vennset)

3-way Venn diagram
vennset <- overLapper(setlist[1:3], type="vennsets")
vennPlot(vennset)

4-way Venn diagram
vennset <- overLapper(setlist[1:4], type="vennsets")
vennPlot(list(vennset, vennset))

Pseudo 4-way Venn diagram with circles
vennPlot(vennset, type="circle")

5-way Venn diagram
vennset <- overLapper(setlist[1:5], type="vennsets")
vennPlot(vennset)

Alternative Venn count input to vennPlot (not recommended!)
counts <- sapply(vennlist(vennset), length)
vennPlot(counts)

6-way Venn comparison as bar plot
vennset <- overLapper(setlist[1:6], type="vennsets")
olBarplot(vennset, mincount=1)

52 plotfeatureCoverage

Bar plot of standard intersect counts
interset <- overLapper(setlist, type="intersects")
olBarplot(interset, mincount=1)

Accessor methods for VENNset/INTERSECTset objects
names(vennset)
names(interset)
setlist(vennset)
intersectmatrix(vennset)
complexitylevels(vennset)
vennlist(vennset)
intersectlist(interset)

Coerce VENNset/INTERSECTset object to list
as.list(vennset)
as.list(interset)

Pairwise intersect matrix and heatmap
olMA <- sapply(names(setlist),

function(x) sapply(names(setlist),
function(y) sum(setlist[[x]] %in% setlist[[y]])))

olMA
heatmap(olMA, Rowv=NA, Colv=NA)

Presence-absence matrices for large numbers of sample sets
interset <- overLapper(setlist=setlist, type="intersects", complexity=2)
(paMA <- intersectmatrix(interset))
heatmap(paMA, Rowv=NA, Colv=NA, col=c("white", "gray"))

plotfeatureCoverage Plot feature coverage results

Description

Plots the 3 tabular data types (A-C) generated by the featureCoverage function. It accepts data
from single or many features (e.g. CDSs) and samples (BAM files). The coverage from multiple
features will be summarized using methods such as mean, while the data from multiple samples will
be plotted in separate panels.

Usage

plotfeatureCoverage(covMA, method = mean, scales = "fixed", extendylim=2,
scale_count_val = 10^6)

Arguments

covMA Object of class data.frame generated by featureCoverage function.

method Defines the summary statistics to use when covMA contains coverage data from
multiple features (e.g. transcripts). The default calculates the mean coverage for
each positon and/or bin of the corresponding coverage vectors.

scales Scales setting passed on to the facet_wrap function of ggplot2. For details see
ggplot2::facet_wrap. The default fixed assures a constant scale across all
bar plot panels, while free uses the optimum scale within each bar plot panel.

plotfeatureCoverage 53

To evaluate plots in all their details, it may be necessary to generate two graphics
files one for each scaling option.

extendylim Allows to extend the upper limit of the y axis when scales=fixed. Internally,
the function identifies the maximum value in the data and then multiplies this
maximum value by the value provided under extendylim. The default is set to
extendylim=2.

scale_count_val

Scales (normalizes) the read counts to a fixed value of aligned reads in each
sample such as counts per million aligned reads (default is 10^6). For this cal-
culation the N_total_aligned values are used that are reported in the input
data.frame generated by the upstream featureCoverage function. Assign
NULL to turn off scaling.

Value

Currently, the function returns ggplot2 bar plot graphics.

Author(s)

Thomas Girke

See Also

featureCoverage

Examples

Construct SYSargs2 object from param and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args

Not run:
Run alignments
args <- runCommandline(args, dir = FALSE, make_bam = TRUE)
outpaths <- subsetWF(args, slot = "output", subset = 1, index = 1)

Features from sample data of systemPipeRdata package
library(txdbmaker)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")

(A) Generate binned coverage for two BAM files and 4 transcripts
grl <- cdsBy(txdb, "tx", use.names=TRUE)
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage.xls")

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(B) Coverage matrix upstream and downstream of start/stop codons
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

54 plotfeaturetypeCounts

readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=TRUE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/featureCoverage_UpDown.xls")

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(C) Combined matrix for both binned and start/stop codon
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=TRUE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/test.xls")

plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

(D) Rle coverage objects one for each query feature
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL,

readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=FALSE,
resizefeatures=TRUE, upstream=20, downstream=20,
outfile="results/RleCoverage.xls")

End(Not run)

plotfeaturetypeCounts Plot read distribution across genomic features

Description

Function to visualize the distribution of reads across different feature types for many alignment
files in parallel. The plots are stacked bar plots representing the raw or normalized read counts for
the sense and antisense strand of each feature. The graphics results are generated with ggplot2.
Typically, the expected input is generated with the affiliated featuretypeCounts function.

Usage

plotfeaturetypeCounts(x, graphicsfile, graphicsformat = "pdf", scales = "fixed", anyreadlength = FALSE,
drop_N_total_aligned = TRUE, scale_count_val = 10^6, scale_length_val = NULL)

Arguments

x data.frame with feature counts generated by the featuretypeCounts func-
tion.

graphicsfile Path to file where to write the output graphics. Note, the function returns the
graphics instructions from ggplot2 for interactive plotting in R. However, due
to the complexity of the graphics generated here, the finished results are written
to a file directly.

graphicsformat Graphics file format. Currently, supported formats are: pdf, png or jpeg. Argu-
ment accepts one of them as character string.

scales Scales setting passed on to the facet_wrap function of ggplot2. For details see
ggplot2::facet_wrap. The default fixed assures a constant scale across all
bar plot panels, while free uses the optimum scale within each bar plot panel.
To evaluate plots in all their details, it may be necessary to generate two graphics
files one for each scaling option.

plotfeaturetypeCounts 55

anyreadlength If set to TRUE read length specific read counts will be summed up to a single
count value to plot read counts for any read length. Otherwise the bar plots will
show the counts for each read length value.

drop_N_total_aligned

If set to TRUE the special feature count N_total_aligned will not be included
as a separate feature in the plots. However, the information will still be used
internally for scaling the read counts to a fixed value if this option is requested
under the scale_count_val argument.

scale_count_val

Scales (normalizes) the read counts to a fixed value of aligned reads in each
sample such as counts per million aligned reads (default is 10^6). For this cal-
culation the N_total_aligned values are used that are reported in the input
data.frame generated by the upstream featuretypeCounds function. Assign
NULL to turn off scaling by aligned reads.

scale_length_val

Allows to adjust the raw or scaled read counts to a constant length interval
(e.g. scale_length_val=10^3 in bps) considering the total genomic length
of the corresponding feature type. The required genomic length information for
each feature type is obtained from the Featuretypelength column of the input
data.frame generated by the featuretypeCount function. To turn off feature
length adjustment, assign NULL (default).

Value

The function returns bar plot graphics for aligned read counts with read length resolution if the
input contains this information and argument anyreadlength is set to FALSE. If the input contains
counts for any read length and/or anyreadlength=TRUE then there will be only one bar per feature
and sample. Due to the complexity of the plots, the results are directly written to file in the chosen
graphics format. However, the function also returns the plotting instructions returned by ggplot2
to display the result components using R’s plotting device.

Author(s)

Thomas Girke

See Also

featuretypeCounts, genFeatures

Examples

Construct SYSargs2 object from param and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args

Not run:
Run alignments
args <- runCommandline(args, dir = FALSE, make_bam = TRUE)
outpaths <- subsetWF(args, slot = "output", subset = 1, index = 1)

56 plotWF

Features from sample data of systemPipeRdata package
library(txdbmaker)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")
feat <- genFeatures(txdb, featuretype="all", reduce_ranges=TRUE, upstream=1000, downstream=0, verbose=TRUE)

Generate and plot feature counts for specific read lengths
fc <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat, singleEnd=TRUE, readlength=c(74:76,99:102), type="data.frame")
p <- plotfeaturetypeCounts(x=fc, graphicsfile="featureCounts.pdf", graphicsformat="pdf", scales="fixed", anyreadlength=FALSE)

Generate and plot feature counts for any read length
fc2 <- featuretypeCounts(bfl=BamFileList(outpaths, yieldSize=50000), grl=feat, singleEnd=TRUE, readlength=NULL, type="data.frame")
p2 <- plotfeaturetypeCounts(x=fc2, graphicsfile="featureCounts2.pdf", graphicsformat="pdf", scales="fixed", anyreadlength=TRUE)

End(Not run)

plotWF Visualize SPR workflow and status

Description

Visualize SPR workflow and status. plotWF is the general function that creates the plot. plotwfOutput
and renderPlotwf are used in Shiny UI and server respectively, similar to plotOutput and renderPlot.

Usage

plotWF(
sysargs,
width = NULL, height = NULL,
elementId = NULL,
responsive = TRUE,
branch_method = "auto",
branch_no = NULL,
layout = "compact",
no_plot = FALSE,
plot_method = "svg",
out_format = "plot",
out_path = NULL,
show_legend = TRUE,
mark_main_branch = FALSE,
rstudio = FALSE,
in_log = FALSE,
rmarkdown = "detect",
verbose = FALSE,
show_warns = FALSE,
plot_ctr = TRUE,
pan_zoom = FALSE,
exit_point = 0

)

plotwfOutput(
outputId,

plotWF 57

width = '100%',
height = '400px'

)

renderPlotwf(
expr,
env = parent.frame(),
quoted = FALSE

)

Arguments

sysargs object of class SYSargsList.

width string, a valid CSS string for width, like "500px", "100%".

height string, a valid CSS string for height, like "500px", "100%".

elementId string, optional ID value for the plot.

responsive bool, should the plot be responsive? useful in Rstudio built-in viewer, Rmark-
down, Shiny or embed it into other web pages.

branch_method string, one of "auto", "choose". How to determine the main branch of the work-
flow. "auto" will be determined by internal alrgothrim: Branches connecting
the frist and last step and/or the longest will be favored. "choose" will list all
possible branches and you can make a choice.

branch_no numeric, only works if branch_method == "choose". Specify a branch number
to be the main branch instead of choosing from the prompt. This option can be
good if you are in a non-interactive mode, e.g. rendering Rmd.

layout string, one of "compact", "vertical", "horizontal", "execution".

no_plot bool, if you want to assgin the plot to a variable and do not want to see it inter-
actively, change this to FALSE.

plot_method string, one of "svg", "png", how to make plot, use svg or png to embed the plot.

out_format string, one of "plot", "html", "dot", "dot_print"

• plot: directly open your viewer or browser of the plot
• html: save the plot to a html file
• dot: save the plot in DOT language, need a dot engine to remake the plot
• dot_print: directly cat the DOT code on console

See details section if one wish to generate other output format, such as jpg or
png.

out_path string, if the out_format is not "plot" or "dot_print", provide a path of where to
save the plot.

show_legend bool, show plot legend?
mark_main_branch

bool, color the main branch on the plot?

rstudio bool, if you are using Rstudio, open the built-in viewer to see the plot? Default
is no, open the browser tab to see it plot. The default viewer is too small to see
the full plot clearly, so we recommend to use the browser tab. However, if you
are using this plot in Shiny apps, always turn rstudio = TRUE.

in_log bool, is this plot been made in a SPR log file? If TRUE will add links of steps to
the corresponding log sections.

58 plotWF

rmarkdown are you rendering this plot in a Rmarkdown document? default value is "detect",
this function will determine based on current R environment, or you can force it
to be TRUE or FALSE.

verbose bool, turn on verbose mode will give you more information.

show_warns bool, print the warning messages on the plot?.

plot_ctr bool, add the plot control panel to the plot? This requires you to have internet
connection. It will download some additional javascript libraries, and allow you
to save the plot as png, jpg, svg, pdf or graphviz directly from the browser.

pan_zoom bool, allow panning and zooming of the plot? Use mouse wheel or touch pad
to zoom in and out of the plot. You need to have internet connection, additional
javascript libraries will be loaded automatically online. Cannot be used with
responsive = TRUE together. If both TRUE, responsive will be automatically
set to FALSE.

exit_point numeric, for advanced debugging only, see details

outputId string, shiny output ID

expr An expression that generates a plotwf, like plotWF(sal)

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Details

layout:

• compact: try to plot steps as close as possible.
• vertical: main branch will be placed vertically and side branches will be placed on the same

horizontal level and sub steps of side branches will be placed vertically.
• horizontal: main branch is placed horizontally and side branches and sub steps will be placed

vertically.
• execution: a linear plot to show the workflow execution order of all steps.

exit_point:
return intermediate results at different points and exit the function

• 0: no early exit
• 1: after all branches are found, return tree
• 2: after the new tree has been built, return new nodes
• 3: after dot translation, return graph string

Rmarkdown:
Rmarkdown will change some of the format and cause conflicts. If the plot can be rendered outside
Rmd but cannot within Rmd, try to turn this option on. Some additional javascript processing will
be performed to avoid the conflict but may cause unknown issues.

Other output formats:
The plot rendering uses htmlwidgets, which generates an interactive HTML page. Saving these
plots directly to standard image files, such as png, is not possible. However, a few workarounds
exist to save to these image formats:

• 1: use webshot2::webshot function.

predORF 59

• 2: use the interactive panel located on the top-left corner to download as an image after the
plot is rendered.

• 3: use plotWF(sal, plot_method = "png") to embed the plot as png, and then right-click
to save the image.

Please see our website for examples: https://systempipe.org/sp/spr/sp_run/step_vis/

Shiny:
When the plot is rendered in a Shiny app, the rstudio option must be turned on, plotWF(sal,
rstudio = TRUE, ...).

Value

see out_format and exit_point

predORF Predict ORFs

Description

Predicts open reading frames (ORFs) and coding sequences (CDSs) in DNA sequences provided as
DNAString or DNAStringSet objects.

Usage

predORF(x, n = 1, type = "grl", mode = "orf", strand = "sense", longest_disjoint=FALSE, startcodon = "ATG", stopcodon = c("TAA", "TAG", "TGA"))

Arguments

x DNA query sequence(s) provided as DNAString or DNAStringSet object.
n Defines the maximum number of ORFs to return for each input sequence. The

ORFs identified are sorted decreasingly by their length. For instance, n=1 (de-
fault) returns the longest ORF, n=2 the two longest ones, and so on.

type One of three options provided as character values: 'df' returns results as data.frame,
while 'gr' and 'grl' (default) return them as GRanges or GRangesList ob-
jects, respectively.

mode The setting mode='ORF' returns a continuous reading frame that begins with a
start codon and ends with a stop codon. The setting mode='CDS' return contin-
uous reading frames that do not need to begin or end with start or stop codons,
respectively.

strand One of three options passed on as character vector of length one: 'sense'
performs the predictions only for the sense strand of the query sequence(s),
'antisense' does it only for the antisense strand and 'both' does it for both
strands.

longest_disjoint

If set to TRUE and n='all', the results will be subsetted to non-overlapping ORF
set containing longest ORF.

startcodon Defines the start codon(s) for ORF predictions. The default is set to the standard
start codon ’ATG’. Any custom set of triplet DNA sequences can be assigned
here.

stopcodon Defines the stop codon(s) for ORF predictions. The default is set to the three
standard stop codons ’TAA’, ’TAG’ and ’TGA’. Any custom set of triplet DNA
sequences can be assigned here.

60 predORF

Value

Returns ORF/CDS ranges identified in query sequences as GRanges or data.frame object. The
type argument defines which one of them will be returned. The objects contain the following
columns:

• seqnames: names of query sequences

• subject_id: identified ORF/CDS ranges numbered by query

• start/end: start and end positions of ORF/CDS ranges

• strand: strand of query sequence used for prediction

• width: length of subject range in bases

• inframe2end: frame of identified ORF/CDS relative to 3’ end of query sequence. This can
be important if the query sequence was extracted directly upstream of an ORF (e.g. 5’ UTR
upstream of main ORF). The value 1 stands for in-frame with downstream ORF, while 2 or 3
indicates a shift of one or two bases, respectively.

Author(s)

Thomas Girke

See Also

scaleRanges

Examples

Load DNA sample data set from Biostrings package
file <- system.file("extdata", "someORF.fa", package="Biostrings")
dna <- readDNAStringSet(file)

Predict longest ORF for sense strand in each query sequence
(orf <- predORF(dna[1:4], n=1, type="gr", mode="orf", strand="sense"))

Not run:
Usage for more complex example
library(txdbmaker); library(systemPipeRdata)
gff <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=gff, format="gff3", organism="Arabidopsis")
futr <- fiveUTRsByTranscript(txdb, use.names=TRUE)
genome <- system.file("extdata/annotation", "tair10.fasta", package="systemPipeRdata")
dna <- extractTranscriptSeqs(FaFile(genome), futr)
uorf <- predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="sense")
grl_scaled <- scaleRanges(subject=futr, query=uorf, type="uORF", verbose=TRUE)
export.gff3(unlist(grl_scaled), "uorf.gff")

End(Not run)

preprocessReads 61

preprocessReads Run custom read preprocessing functions

Description

Applies custom read preprocessing functions to single-end or paired-end FASTQ files. The function
uses the FastqStreamer function from the ShortRead package to stream through large files in a
memory-efficient manner.

Usage

preprocessReads(args = NULL,
FileName1 = NULL, FileName2 = NULL,
outfile1 = NULL, outfile2 = NULL,
Fct, batchsize = 100000, overwrite = TRUE, ...)

Arguments

args Object of class SYSargs or SYSargs2.

FileName1 Path to input forward fastq file. Defaul is NULL.

FileName2 Path to input reverse fastq file. Defaul is NULL

outfile1 Path to output forward fastq file. Defaul is NULL

outfile2 Path to output reverse fastq file. Defaul is NULL

Fct character string of custom read preprocessing function call where both the
input and output needs to be an object of class ShortReadQ. The name of the
input ShortReadQ object needs to be fq.

batchsize Number of reads to process in each iteration by the internally used FastqStreamer
function.

overwrite If TRUE existing file will be overwritten.

... To pass on additional arguments to the internally used writeFastq function.

Value

Writes to files in FASTQ format. Their names are specified by outpaths(args).

Author(s)

Thomas Girke

See Also

FastqStreamer

62 printParam

Examples

Preprocessing of single-end reads
dir_path <- system.file("extdata/cwl/preprocessReads/trim-se", package="systemPipeR")
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
trim <- loadWorkflow(targets=targetspath, wf_file="trim-se.cwl", input_file="trim-se.yml", dir_path=dir_path)
trim <- renderWF(trim, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
Not run:
preprocessReads(args=trim[1], Fct="trimLRPatterns(Rpattern='GCCCGGGTAA', subject=fq)", batchsize=100000, overwrite=TRUE, compress=TRUE)

End(Not run)

Preprocessing of paired-end reads
dir_path <- system.file("extdata/cwl/preprocessReads/trim-pe", package="systemPipeR")
targetspath <- system.file("extdata", "targetsPE.txt", package="systemPipeR")
trim <- loadWorkflow(targets=targetspath, wf_file="trim-pe.cwl", input_file="trim-pe.yml", dir_path=dir_path)
trim <- renderWF(trim, inputvars=c(FileName1="_FASTQ_PATH1_", FileName2="_FASTQ_PATH2_", SampleName="_SampleName_"))
trim
Not run:
preprocessReads(args=trim[1], Fct="trimLRPatterns(Rpattern='GCCCGGGTAA', subject=fq)", batchsize=100000, overwrite=TRUE, compress=TRUE)

End(Not run)

printParam Accessories function to modify the Command-line Version 1

Description

Accessories function to modify the Command-line Version 1

Usage

printParam(sysargs, position, index = NULL)
subsetParam(sysargs, position, index = NULL, trim = TRUE, mute = FALSE)
replaceParam(sysargs, position, index = NULL, replace, mute = FALSE)
renameParam(sysargs, position, index = FALSE, rename, mute = FALSE)
appendParam(sysargs, position, index = NULL, append, after, mute = FALSE)

Arguments

sysargs Object of class SYSargs2. Output from the createParamFiles function.
position string, one of baseCommand, inputs, outputs to view or apply a modification.
index numeric or character vector, index to view or change a single item in baseCommand,

inputs, outputs.
trim logical, only keep arguments specified by index. Default is "TRUE".
replace named list, replace arguments in different positions. Replace list length must be

the same as index. Different positions will have different requirements.
rename character vector, rename items in different positions. rename vector length must

be the same as index.
append named list, same requirements as replace, however it cannot append baseCommand.
after a subscript, after which the values are to be appended. If NULL will be after the

last argument or specify a numeric integer.
mute logical, print the raw command-line string and output after replacing or rename.

printParam2 63

Details

- printParam: prints its arguments defined by position and index.

- subsetParam: returns subsets of command-line, keeping the arguments defined by position and
index.

- replaceParam: replaces the values in command-line with indices given in list by those given in
values

- renameParam: rename the names of the arguments.

- appendParam: Add arguments to the original command line.

Value

SYSargs2 object

Author(s)

Le Zhang and Daniela Cassol

References

For more details on CWL, please consult the following page: https://www.commonwl.org/

See Also

writeParamFiles createParamFiles loadWorkflow renderWF showClass("SYSargs2")

Examples

command <- "
hisat2 \

-S <F, out: ./results/M1A.sam> \
-x <F: ./data/tair10.fasta> \
-k <int: 1> \
-min-intronlen <int: 30> \
-max-intronlen <int: 3000> \
-threads <int: 4> \
-U <F: ./data/SRR446027_1.fastq.gz> \
--verbose

"
cmd <- createParamFiles(command)
cmdlist(cmd)

printParam2 Accessories function to modify the Command-line Version 2

Description

Accessories function to modify the Command-line Version 2

64 printParam2

Usage

printParam2(sysargs, base = FALSE, args = FALSE, inputs = FALSE,
outputs = FALSE, stdout = FALSE, raw_cmd = FALSE, all = TRUE)

appendParam2(sysargs, x, position = c("inputs", "args", "outputs"),
after = NULL, verbose = FALSE)

replaceParam2(sysargs, x, index=NULL,
position = c("inputs", "baseCommand", "args", "outputs", "stdout"),
verbose = FALSE)

removeParam2(sysargs, index=NULL, position = c("inputs", "args", "outputs", "stdout"),
verbose = FALSE)

renameParam2(sysargs, index=NULL, new_names,
position = c("inputs", "args", "outputs", "stdout"), verbose = FALSE)

Arguments

sysargs Object of class SYSargs2. Output from the createParamFiles function.

base logical, print out base command information?

args logical, print out arguments information?

inputs logical, print out inputs information?

outputs logical, print out outputs information?

stdout logical, print out stdout information?

raw_cmd logical, print out parsed raw command information?

all logical, print out all base command, arguments, inputs, outputs, and raw com-
mand information? Turn this to TRUE will overwrite all above to TRUE. If you
need to print out selected positions, turn this to FALSE and turn other positions
to TRUE.

position string, one of the positions to apply a modification. For appendParam2: "in-
puts", "args", "outputs", for replaceParam2: "inputs", "baseCommand", "args",
"outputs", "stdout", for removeParam2, renameParam2: "inputs", "args", "out-
puts", "stdout".

index numeric or character vector, index of items to remove or rename item(s) inside
the position you choose, in removeParam2, renameParam2, replaceParam2.

after integer, in appendParam2, after which current item you want to append the new
items in the position you have selected? For example, if you want the new item
to be the first, then use 0, if last, then use 999 to make sure it goes to the last
one.

x named list or string, new items to replace or append in different positions. Re-
place list length must be the same as index. Different positions will have dif-
ferent requirements. See details of the x format requirements.

new_names character vector, new names that you wish to replace the old names. new_names
vector length must be the same as index in renameParam2.

verbose logical, show addtional information during/after operation? for example, print
the new changes.

Details

- printParam2: prints its arguments defined by position and index.

- removeParam2: removes items in certain positions you select.

printParam2 65

- replaceParam2: replaces the values in command-line with indices given in list by those given in
values

- renameParam2: rename the names of items in certain position.

- appendParam2: Add arguments to the original command line. Adding new basecommand or
standard out is not allowed.

x format: - If x is a character, it requires exact 3 semi-colons ; to separate the string in to
4 columns. Values before the third column is the same as createParam inputs, first column:
prefix/argument name, second column: type, third column: default value. The fourth column
(new): numeric, index of the new item, this will be translated into position entries in CWL.
- If x is a list, it must be named. Following items must be included in list: preF, type, value,
index. They refer to prefix, param type, default value, and position index correspondingly.

Value

SYSargs2 object

Author(s)

Le Zhang and Daniela Cassol

References

For more details on CWL, please consult the following page: https://www.commonwl.org/

See Also

writeParamFiles createParamFiles loadWorkflow renderWF showClass("SYSargs2")

Examples

command2 <- '
mycmd2 \

p: -s; File; sample1.txt \
p: -s; File; sample2.txt \
p: --c; ; \
p: -o; File; out: myout.txt \
ref_genome; File; a.fasta \
p: --nn; int; 12 \
mystdout; File; stdout: abc.txt

'
cmd2 <- createParam(command2, syntaxVersion = "v2", writeParamFiles=FALSE)
string format
new_cmd <- 'p: -abc; string; abc; 7'
cmd2 <- appendParam2(cmd2, x = new_cmd, position = "inputs")
printParam2(cmd2, all = FALSE, inputs = TRUE, raw_cmd = TRUE)
list format
new_cmd <- list(name = "new_arg", preF = "--foo", index = "8")
cmd2 <- appendParam2(cmd2, x = new_cmd, position = "args")
printParam2(cmd2, all = FALSE, args = TRUE, raw_cmd = TRUE)
rename
cmd2 <- renameParam2(cmd2, "new_name_arg", index = "new_arg", position = "args")
printParam2(cmd2, all = FALSE, args = TRUE, raw_cmd = TRUE)
remove
cmd2 <- removeParam2(cmd2, index = "new_name_arg", position = "args")
printParam2(cmd2, all = FALSE, args = TRUE, raw_cmd = TRUE)

66 readComp

readComp Import sample comparisons from targets file

Description

Parses sample comparisons specified in <CMP> line(s) of targets file or in targetsheader slot of
SYSargs object. All possible comparisons can be specified with ’CMPset: ALL’.

Usage

readComp(file, format = "vector", delim = "-")

Arguments

file Path to targets file. Alternatively, a SYSargs or SYSargs2 object can be assigned.

format Object type to return: vector or matrix.

delim Delimiter to use when sample comparisons are returned as vector.

Value

list where each component is named according to the name(s) used in the <CMP> line(s) of the
targets file. The list will contain as many sample comparisons sets (list components) as there are
sample comparisons lines in the corresponding targets file.

Author(s)

Thomas Girke

Examples

Return comparisons from targets file
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
read.delim(targetspath, comment.char = "#")
readComp(file=targetspath, format="vector", delim="-")

Return comparisons from SYSargs2 object
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args
readComp(args, format = "vector", delim = "-")

renderLogs 67

renderLogs Render RMarkdown Logs Report

Description

Render the logs report file to the specified output format using pandoc.

Usage

renderLogs(sysargs, type = c("html_document", "pdf_document"),
fileName = "default", quiet = FALSE,
open_file = TRUE)

Arguments

sysargs object of class SYSargsList.
type The R Markdown output format to convert to. The option can be the name of a

format (e.g. "pdf_document" or "html_document").
fileName character string naming a file output. Default is "logs_<date>.Rmd".
quiet If set to TRUE, all messages returned by the function will be suppressed.
open_file Default is TRUE.

Value

It will return an SYSargsList updated.

Author(s)

Daniela Cassol

See Also

See also as SYSargsList-class.

Examples

Construct SYSargsList object from Rmd file
sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl", input_file="example/example.yml",

dir_path = system.file("extdata/cwl", package="systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

},
step_name = "R_read",
dependency = "echo")

sal <- runWF(sal)
sal <- renderLogs(sal, open_file = FALSE)

68 renderReport

renderReport Render RMarkdown Report

Description

Render the technical report file to the specified output format using pandoc.

Usage

renderReport(sysargs, fileName ="SPR_Report",
rmd_title = "SPR workflow Template - Report",
rmd_author = "Author",
rmd_date= "Last update: `r format(Sys.time(), '%d %B, %Y')`",
type = c("html_document"),
desc = "This is a workflow template.",
quiet = FALSE, open_file = TRUE)

Arguments

sysargs object of class SYSargsList.

fileName character string naming a file output. Default is "spr_report.Rmd".

rmd_title string, title of the Rmd.

rmd_author string, author(s) of the Rmd, put all authors in a single character string.

rmd_date string, date header of Rmd.

type The R Markdown output format to convert to. The option can be the name of a
format (e.g. "pdf_document" or "html_document").

desc string, or character vector of strings, some description text in format Rmarkdown
that will be added to the document before the workflow steps start. It can be a
single line or multiple lines by providing a character vector, each item is one
line.

quiet If set to TRUE, all messages returned by the function will be suppressed.

open_file Default is TRUE.

Value

It will return an SYSargsList updated, with the file path location.

Author(s)

Daniela Cassol

See Also

See also as SYSargsList-class.

returnRPKM 69

Examples

sal <- SPRproject(overwrite = TRUE)
file_path <- system.file("extdata", "spr_simple_wf.Rmd", package = "systemPipeR")
sal <- importWF(sal, file_path = file_path, verbose = FALSE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package = "systemPipeR")
appendStep(sal) <- SYSargsList(step_name = "echo",

targets = targetspath, dir = TRUE,
wf_file = "example/workflow_example.cwl", input_file = "example/example.yml",

dir_path = system.file("extdata/cwl", package = "systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

sal <- renderReport(sal, open_file = FALSE)

returnRPKM RPKM Normalization

Description

Converts read counts to RPKM normalized values.

Usage

returnRPKM(counts, ranges)

Arguments

counts Count data frame, e.g. from an RNA-Seq experiment.

ranges GRangesList object, e.g. generated by exonsBy(txdb, by="gene").

Value

data.frame

Author(s)

Thomas Girke

Examples

Not run:
countDFrpkm <- apply(countDF, 2, function(x) returnRPKM(counts=x, gffsub=eByg))

End(Not run)

70 runCommandline

runCommandline Execute SYSargs and SYSargs2

Description

Function to execute system parameters specified in SYSargs and SYSargs2 object.

Usage

runCommandline(args, runid = "01", make_bam = FALSE, del_sam=TRUE, dir = TRUE,
dir.name = NULL, force=FALSE, input_targets = NULL, ...)

Arguments

args object of class SYSargs or SYSargs2.

runid Run identifier used for log file to track system call commands. Default is "01".

make_bam Auto-detects SAM file outputs and converts them to sorted and indexed BAM
files. Default is make_bam=FALSE.

del_sam This option allows deleting the SAM files created when the make_BAM converts
the SAM files to sorted and indexed BAM files. Default is del_sam=TRUE.

dir This option allows creating an exclusive results folder for each step in the work-
flow and a sub-folder for each sample defined in the targets file. All the out-
puts and log files for the particular step will be created in the respective folders.
Default is dir=TRUE. Option available only for an object of class SYSargs2.

dir.name Name of the workflow directory. Default is dir.name=FALSE. Note: This argu-
ment is required when the dir=TRUE.

force Internally, the function checks if the expected output files exist, and it skips
the command lines when the respective files exist. If the argument force is set
to TRUE, the command line will be executed and the files overwrite. Default is
force=FALSE.

input_targets This option allows selecting which targets file and, by consequence which com-
mand line will be executed. Default is NULL, in which all command lines will be
executed.

... Additional arguments to pass on to runCommandline().

Value

Output files, their paths can be obtained with outpaths() from SYSargs container or output()
from SYSargs2. In addition, a character vector is returned containing the same paths.

Author(s)

Daniela Cassol and Thomas Girke

runCommandline 71

Examples

##
Examples with \code{SYSargs2} object
##
Construct SYSargs2 object from CWl param, CWL input, and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF
names(WF); modules(WF); targets(WF)[1]; cmdlist(WF)[1:2]; output(WF)

Not run:
Execute SYSargs2 on single machine
WF <- runCommandline(args=WF)

Execute SYSargs on multiple machines of a compute cluster.
file.copy(system.file("extdata", ".batchtools.conf.R",

package="systemPipeR"), ".")
file.copy(system.file("extdata", "batchtools.slurm.tmpl",

package="systemPipeR"), ".")
resources <- list(walltime=120, ntasks=1, ncpus=4, memory=1024)
reg <- clusterRun(WF, FUN = runCommandline,

more.args = list(args = WF, make_bam = TRUE),
conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl",
Njobs=18, runid="01", resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)

Updates the path in the object \code{output(WF)}
WF <- output_update(WF, dir=FALSE, replace=TRUE, extension=c(".sam", ".bam"))

Alignment stats
read_statsDF <- alignStats(WF)
read_statsDF <- cbind(read_statsDF[targets$FileName,], targets)
write.table(read_statsDF, "results/alignStats.xls",

row.names=FALSE, quote=FALSE, sep="\t")

End(Not run)

###
Examples with \code{SYSargs} object
###
Construct SYSargs object from param and targets files
param <- system.file("extdata", "hisat2.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); modules(args); cores(args); outpaths(args); sysargs(args)

Not run:
Execute SYSargs on single machine
runCommandline(args=args)

72 runDiff

Execute SYSargs on multiple machines of a compute cluster.
file.copy(system.file("extdata", ".batchtools.conf.R", package="systemPipeR"), ".")
file.copy(system.file("extdata", "batchtools.slurm.tmpl", package="systemPipeR"), ".")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, FUN = runCommandline, conffile=".batchtools.conf.R",

template="batchtools.slurm.tmpl", Njobs=18,
runid="01", resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)
file.exists(outpaths(args))

Alignment stats
read_statsDF <- alignStats(args)
read_statsDF <- cbind(read_statsDF[targets$FileName,], targets)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE,

quote=FALSE, sep="\t")

End(Not run)

runDiff Differential abundance analysis for many range sets

Description

Convenience wrapper function for run_edgeR and run_DESeq2 to perform differential expression
or abundance analysis iteratively for several count tables. The latter can be peak calling results for
several samples or counts generated for different genomic feature types. The function also returns
the filtering results and plots from filterDEGs.

Usage

runDiff(args, outfiles=NULL, diffFct, targets, cmp, dbrfilter, ...)

Arguments

args An instance of SYSargs or SYSargs2 constructed from a targets file where
the first column (targetsin(args) or targets.as.df(targets(args))) con-
tains the paths to the tabular read count data files. Another possibily is named
character vector with the paths to the tabular range data files and the elements
names should be the sampleID.

outfiles Default is NULL. When args is an object of named character vector class,
outfile argument is required. Named character vector with the paths to the
resulting count tables and the elements names should be the sampleID.

diffFct Defines which function should be used for the differential abundance analysis.
Can be diffFct=run_edgeR or diffFct=run_DESeq2.

targets targets data.frame

cmp character matrix where comparisons are defined in two columns. This matrix
should be generated with readComp() from the targets file. Values used for
comparisons need to match those in the Factor column of the targets file.

runWF 73

dbrfilter Named vector with filter cutoffs of format c(Fold=2, FDR=1) where Fold refers
to the fold change cutoff (unlogged) and FDR to the p-value cutoff. Those values
are passed on to the filterDEGs function.

... Arguments to be passed on to the internally used run_edgeR or run_DESeq2
function.

Value

Returns list containing the filterDEGs results for each count table. Each result set is a list with
four components which are described under ?filterDEGs. The result files contain the edgeR or
DESeq2 results from the comparisons specified under cmp. The base names of the result files are
the same as the corresponding input files specified under countfiles and the value of extension
appended.

Author(s)

Thomas Girke

See Also

run_edgeR, run_DESeq2, filterDEGs

Examples

Paths to BAM files
param <- system.file("extdata", "bowtieSE.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args_bam <- systemArgs(sysma=param, mytargets=targets)
bfl <- BamFileList(outpaths(args_bam), yieldSize=50000, index=character())

Not run:
SYSargs with paths to range data and count files
args <- systemArgs(sysma="param/count_rangesets.param", mytargets="targets_macs.txt")

Iterative read counting
countDFnames <- countRangeset(bfl, args, mode="Union", ignore.strand=TRUE)
writeTargetsout(x=args, file="targets_countDF.txt", overwrite=TRUE)

Run differential abundance analysis
cmp <- readComp(file=args_bam, format="matrix")
args_diff <- systemArgs(sysma="param/rundiff.param", mytargets="targets_countDF.txt")
dbrlist <- runDiff(args, diffFct=run_edgeR, targets=targetsin(args_bam), cmp=cmp[[1]], independent=TRUE, dbrfilter=c(Fold=2, FDR=1))
writeTargetsout(x=args_diff, file="targets_rundiff.txt", overwrite=TRUE)

End(Not run)

runWF Execute SYSargsList

Description

Function to execute all the code list specified in SYSargsList object.

74 runWF

Usage

runWF(sysargs, steps = NULL, targets = NULL,
force = FALSE, saveEnv = TRUE,
run_step = "ALL", ignore.dep = FALSE,
warning.stop = FALSE, error.stop = TRUE, silent = FALSE, ...)

Arguments

sysargs object of class SYSargsList.

steps character or numeric. Step name or index. If NULL, all the steps will be executed.

targets This option allows selecting which targets file and, by consequence which com-
mand line will be executed for each SYSargs2 class step. Default is NULL, in
which all command lines will be executed.

force Internally, the option checks if the expected output files exist, and it skips the
command lines when the respective files exist. If the argument force is set to
TRUE, the command line will be executed and the files overwrite. Default is
force=FALSE.

saveEnv If set to TRUE, the environment will be saved to an RDS file. To check the RDS
file location, please use projectInfo(sysargs)[["envir"]].

run_step character. If the step has "mandatory" or "optional" flag for the execution. When
ALL, all the steps will be executed.

ignore.dep logical. This option allow to igonore the dependency tree, when TRUE.

warning.stop If set to TRUE, the process will be interrupted when a warning is detected.

error.stop If set to TRUE, the process will be interrupted when a error is detected.

silent If set to TRUE, all messages returned by the function will be suppressed.

... Additional arguments to pass on from runCommandline().

Value

It will return an SYSargsList updated.

Author(s)

Daniela Cassol and Thomas Girke

See Also

See also as SYSargsList-class.

Examples

Construct SYSargsList object from Rmd file
sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl", input_file="example/example.yml",

dir_path = system.file("extdata/cwl", package="systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

run_DESeq2 75

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

},
step_name = "R_read",
dependency = "echo")

Not run:
sal <- runWF(sal)

End(Not run)

run_DESeq2 Runs DESeq2

Description

Convenience wrapper function to identify differentially expressed genes (DEGs) in batch mode with
DESeq2 for any number of pairwise sample comparisons specified under the cmp argument. Users
are strongly encouraged to consult the DESeq2 vignette for more detailed information on this topic
and how to properly run DESeq2 on data sets with more complex experimental designs.

Usage

run_DESeq2(countDF, targets, cmp, independent = FALSE, lfcShrink=FALSE, type="normal")

Arguments

countDF date.frame containing raw read counts

targets targets data.frame

cmp character matrix where comparisons are defined in two columns. This matrix
should be generated with the readComp() function from the targets file. Values
used for comparisons need to match those in the Factor column of the targets
file.

independent If independent=TRUE then the countDF will be subsetted for each comparison.
This behavior can be useful when working with samples from unrelated studies.
For samples from the same or comparable studies, the setting independent=FALSE
is usually preferred.

lfcShrink logiacal. If TRUE adds shrunken log2 fold changes (LFC) to the object.

type please check DESeq2::lfcShrink() documentation. Available character al-
ternatives: "apeglm"; "ashr"; "normal".

Value

data.frame containing DESeq2 results from all comparisons. Comparison labels are appended to
column titles for tracking.

Author(s)

Thomas Girke

References

Please properly cite the DESeq2 papers when using this function: http://www.bioconductor.org/packages/devel/bioc/html/DESeq2.html

76 run_edgeR

See Also

run_edgeR, readComp and DESeq2 vignette

Examples

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countfile <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- read.delim(countfile, row.names=1)
degseqDF <- run_DESeq2(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE)
pval <- degseqDF[, grep("_FDR$", colnames(degseqDF)), drop=FALSE]
fold <- degseqDF[, grep("_logFC$", colnames(degseqDF)), drop=FALSE]
DEG_list <- filterDEGs(degDF=degseqDF, filter=c(Fold=2, FDR=10))
names(DEG_list)
DEG_list$Summary

run_edgeR Runs edgeR

Description

Convenience wrapper function to identify differentially expressed genes (DEGs) in batch mode with
the edgeR GML method for any number of pairwise sample comparisons specified under the cmp ar-
gument. Users are strongly encouraged to consult the edgeR vignette for more detailed information
on this topic and how to properly run edgeR on data sets with more complex experimental designs.

Usage

run_edgeR(countDF, targets, cmp, independent = TRUE, paired = NULL, mdsplot = "")

Arguments

countDF date.frame containing raw read counts

targets targets data.frame

cmp character matrix where comparisons are defined in two columns. This matrix
should be generated with readComp() from the targets file. Values used for
comparisons need to match those in the Factor column of the targets file.

independent If independent=TRUE then the countDF will be subsetted for each comparison.
This behavior can be useful when working with samples from unrelated studies.
For samples from the same or comparable studies, the setting independent=FALSE
is usually preferred.

paired Defines pairs (character vector) for paired analysis. Default is unpaired (paired=NULL).

mdsplot Directory where plotMDS should be written to. Default setting mdsplot="" will
omit the plotting step.

Value

data.frame containing edgeR results from all comparisons. Comparison labels are appended to
column titles for tracking.

sal2bash 77

Author(s)

Thomas Girke

References

Please properly cite the edgeR papers when using this function: http://www.bioconductor.org/packages/devel/bioc/html/edgeR.html

See Also

run_DESeq2, readComp and edgeR vignette

Examples

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
countfile <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- read.delim(countfile, row.names=1)
edgeDF <- run_edgeR(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")
pval <- edgeDF[, grep("_FDR$", colnames(edgeDF)), drop=FALSE]
fold <- edgeDF[, grep("_logFC$", colnames(edgeDF)), drop=FALSE]
DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=10))
names(DEG_list)
DEG_list$Summary

sal2bash Translate SYSargsList back to a bash workflow

Description

This function takes a SYSargsList object and translate it to an executable bash script, so one can
run the workflow without loading SPR or using an R console.

Usage

sal2bash(sal, out_dir = ".", bash_path = "/bin/bash", stop_on_error = TRUE)

Arguments

sal SYSargsList object.

out_dir string, a relative or absolute path to a directory. If the directory does not exist,
this function will first try to create it.

bash_path string, the path to the bash executable program

stop_on_error bool, should the bash script stop if any error happens in running

78 sal2bash

Details

out files

1. The main executable bash file will be created to the root of ‘out_dir‘

2. All R steps will be stored as R scripts and along with other supporting files inside a folder called
‘spr_bash‘ under ‘out_dir‘

3. Not all R steps will have an individual file. This function will "collapse" adjacent R steps into one
file as much as possible. Namely, if there is no sysArgs steps in between, R steps will be merged
into one file, otherwise they will be in different files.

R steps

Similarly as running the workflow in R console, all R steps will share the same environment vari-
ables and loaded packages. This is done by loading and saving the R environment into a file
‘spr_wf.RData‘ before and after the R script execution. Therefore, it will be good to keep all R
steps bundle together as much as possible to avoid the package and environment loading/saving
overhead time.

Initially, this environment only contains the SYSargsList object that was used to create the bash
script. Note: the SYSargsList object name will be the same as what you pass to ‘sal2bash‘. If
you have ‘sal2bash(my_sal)‘, then in the ‘spr_wf.RData‘ there will be an object called ‘my_sal‘
saved there. It is important to keep using the same name for the SYSargsList object managing the
workflow and in workflow running. For example, if you have an R step that requires to query a
column from the outfiles of the SAL, ‘getColumn(sal, "FileName1")‘, but you pass ‘my_sal‘ to
‘sal2bash(my_sal)‘, this will cause this R step cannot find the SAL object when run the workflow
from bash.

Execution

This way of execution is not able to handle complex dependency graphs. The original step depen-
dencies from SAL object will be ignored, so all steps will be executed in a linear manner. It is
recommended to adjust the workflow order before using this function.

Value

no return

Author(s)

Le Zhang and Daniela Cassol

Examples

file_path <- system.file("extdata/spr_simple_wf.Rmd", package="systemPipeR")
sal <- SPRproject(overwrite = TRUE)
sal <- importWF(sal, file_path)
sal2bash(sal)

sal2rmd 79

sal2rmd Translate SYSargsList back to a workflow template Rmarkdown file

Description

This function takes a SYSargsList object and translate it to SPR workflow template Rmarkdown
format.

Usage

sal2rmd(sal, out_path = "spr_template.Rmd", rmd_title = "SPR workflow template",
rmd_author = "my name",
rmd_date = "Last update: `r format(Sys.time(), '%d %B, %Y')`",
rmd_output = "html_document",
desc = "This is a workflow template.", verbose = TRUE)

Arguments

sal SYSargsList object.

out_path string, output file name.

rmd_title string, title of the Rmd.

rmd_author string, author(s) of the Rmd, put all authors in a single character string.

rmd_date string, date header of Rmd.

rmd_output string, output format of Rmd, used in header.

desc string, or character vector of strings, some description text in format Rmarkdown
that will be added to the document before the workflow steps start. It can be a
single line or multiple lines by providing a character vector, each item is one
line.

verbose logical. If TRUE will show you more information as the function runs.

Value

no return

Author(s)

Le Zhang and Daniela Cassol

Examples

file_path <- system.file("extdata/spr_simple_wf.Rmd", package="systemPipeR")
sal <- SPRproject(overwrite = TRUE)
sal <- importWF(sal, file_path)
sal2rmd(sal)

80 scaleRanges

scaleRanges Scale spliced ranges to genome coordinates

Description

Function to scale mappings of spliced features (query ranges) to their corresponding genome coor-
dinates (subject ranges). The method accounts for introns in the subject ranges that are absent in the
query ranges. A use case example are uORFs predicted in the 5’ UTRs sequences using predORF.
These query ranges are given relative to the 5’ UTR sequence. The scaleRanges function will scale
them to the corresponding genome coordinates. This way they can be used in RNA-Seq expression
experiments like other gene ranges.

Usage

scaleRanges(subject, query, type = "custom", verbose = TRUE)

Arguments

subject Genomic ranges provided as GRangesList object. Their name and length re-
quirements are described under query.

query Feature level ranges provided as GRangesList object. The names of the query
ranges need to match the names of the GRangesList object assigened to the
subject argument. In addition, the length of each query range cannot exceed
the total length of the corresponding subject range set.

type Feature name to use in type column of GRangesList result.

verbose The setting verbose=FALSE suppresses all print messages.

Value

Object of class GRangesList

Author(s)

Thomas Girke

See Also

predORF

Examples

library(IRanges)
Usage for simple example
subject <- GRanges(seqnames="Chr1", IRanges(c(5,15,30),c(10,25,40)), strand="+")
query <- GRanges(seqnames="myseq", IRanges(1, 9), strand="+")
scaleRanges(GRangesList(myid1=subject), GRangesList(myid1=query), type="test")

Not run:
Usage for more complex example
library(txdbmaker); library(systemPipeRdata)
gff <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=gff, format="gff3", organism="Arabidopsis")

seeFastq 81

futr <- fiveUTRsByTranscript(txdb, use.names=TRUE)
genome <- system.file("extdata/annotation", "tair10.fasta", package="systemPipeRdata")
dna <- extractTranscriptSeqs(FaFile(genome), futr)
uorf <- predORF(dna, n="all", mode="orf", longest_disjoint=TRUE, strand="sense")
grl_scaled <- scaleRanges(subject=futr, query=uorf, type="uORF", verbose=TRUE)
export.gff3(unlist(grl_scaled), "uorf.gff")

End(Not run)

seeFastq Quality reports for FASTQ files

Description

The following seeFastq and seeFastqPlot functions generate and plot a series of useful quality
statistics for a set of FASTQ files including per cycle quality box plots, base proportions, base-
level quality trends, relative k-mer diversity, length and occurrence distribution of reads, number of
reads above quality cutoffs and mean quality distribution. The functions allow processing of reads
with variable length, but most plots are only meaningful if the read positions in the FASTQ file are
aligned with the sequencing cycles. For instance, constant length clipping of the reads on either end
or variable length clipping on the 3’ end maintains this relationship, while variable length clipping
on the 5’ end without reversing the reads erases it.

The function seeFastq computes the summary stats and stores them in a relatively small list object
that can be saved to disk with save() and reloaded with load() for later plotting. The argument
’klength’ specifies the k-mer length and ’batchsize’ the number of reads to random sample from
each fastq file.

Usage

seeFastq(fastq, batchsize, klength = 8)

seeFastqPlot(fqlist, arrange = c(1, 2, 3, 4, 5, 8, 6, 7), ...)

Arguments

fastq Named character vector containing paths to FASTQ file in the data fields and
sample labels in the name slots.

batchsize Number of reads to random sample from each FASTQ file that will be consid-
ered in the QC analysis. Smaller numbers reduce the memory footprint and
compute time.

klength Specifies the k-mer length in the plot for the relative k-mer diversity.

fqlist list object returned by seeFastq().

arrange Integer vector from 1 to 7 specifying the row order of the QC plot. Dropping
numbers eliminates the corresponding plots.

... Additional plotting arguments to pass on to seeFastqPlot().

Value

The function seeFastq returns the summary stats in a list containing all information required for
the quality plots. The function seeFastqPlot plots the information generated by seeFastq using
ggplot2.

82 showDF

Author(s)

Thomas Girke

Examples

Not run:
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
fqlist <- seeFastq(fastq=infile1(args), batchsize=10000, klength=8)
pdf("fastqReport.pdf", height=18, width=4*length(fastq))
seeFastqPlot(fqlist)
dev.off()

End(Not run)

showDF Create an HTML table using DT package with fixed columns

Description

Create an HTML table using DT package with fixed columns

Usage

showDF(data, ...)

Arguments

data data object (either a matrix or a data frame).

... Additional arguments used by dDT::atatable() function.

Value

returns an object of datatables and htmlwidget.

Examples

showDF(iris)

SPRproject 83

SPRproject Workflow Project Initiation

Description

Function to construct SYSargsList workflow control environment (S4 object). This function cre-
ates and checks the directory structure. If the expected directories are not available, it is possible to
create those. The project directory default structure expected is:

• SPRproject/

– data/

– param/

– results/

The project working directory names can be modified, but users need to edit the code accordingly.

Usage

SPRproject(projPath = getwd(), data = "data", param = "param", results = "results",
logs.dir= ".SPRproject", sys.file="SYSargsList.yml",
envir = new.env(),
restart = FALSE, resume=FALSE,
load.envir = FALSE,
overwrite = FALSE, silent = FALSE)

Arguments

projPath a character vector of a full project path name. Default is the current path.

data a character vector of a data directory name. Default is data. This subdirectory
in the project stores all the raw data, reference, and annotation files.

param a character vector of a param directory name. Default is param. This subdirec-
tory in the project stores all the parameter and configuration files.

results a character vector of a results directory name. Default is results. This sub-
directory in the project stores all the analysis results, including but not limited:
alignment, variant, and peak files (BAM, VCF, BED); tabular result files; and
image/plot files.

logs.dir a character vector of a logs directory name. Default is .SPRproject.

sys.file a character vector of SYSargsList file name which will store all the project
configuration information. Default is SYSargsList.yml and it will be save in
the logs.dir folder.

envir the environment in which workflow will be evaluated. Default will create a
new.env().

restart if set to TRUE, existing SYSargsList object saved in the logs.dir directory will
be used to restart the workflow. This option will delete all the log files.

resume if set to TRUE, existing SYSargsList object saved in the logs.dir directory will
be used to resume the workflow.

84 subsetWF

load.envir This argument allows to load the environment and recover all the objects saved
during the workflow execution (please check runWF function for more details).
This argument can be set as TRUE when restart = TRUE or resume = TRUE are
used.

overwrite if set to TRUE, existing logs.dir directory and all the content, as logs files and
SYSargsList file will be removed, and a new and empty SYSargsList object
will be created. This option should be used with caution!

silent if set to TRUE, all messages returned by the function will be suppressed.

Details

If an SYSargsList instance was created before or independent of the project initialization, it is pos-
sible to append this instance after the project is created. Please see check appendStep<- function.

Value

SPRproject will return a SYSargsList object.

Author(s)

Daniela Cassol

See Also

See also as SYSargsList-class.

Examples

sal <- SPRproject(projPath = tempdir())
sal

subsetWF Subsetting SYSargs2 class slots

Description

Return subsets of character for the input, output or the list of command-line for each workflow
step.

Usage

subsetWF(args, slot, subset=NULL, index=NULL, delete=FALSE)

Arguments

args object of class SYSargs2.

slot three options available: type="input" returns input slot from SYSargs2 object;
type="output" returns output slot from SYSargs2 object; and type="step"
returns all the command-line for each workflow step from SYSargs2 object.

symLink2bam 85

subset name or numeric position of the values to be subsetting in the slot. If slot="input",
the subset are the variables defined in the param.yml file. If slot="step", the
subset is the command line defined on the SYSargs2 object for all the steps of
the workflow. If slot="output", the subset is the path for the expected output
files for all the steps in the workflow. Default is subset=NULL

index A numeric index positions of the file in SYSargs2 object, slot output. It requires
a subset to be defined. Default is index=NULL.

delete allows to delete a subset of files in the case of slot="output". Default is
delete=NULL.

Author(s)

Daniela Cassol and Thomas Girke

See Also

loadWorkflow renderWF

Examples

Construct SYSargs2 object
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF

Testing subset_wf function
input <- subsetWF(WF, slot="input", subset='FileName')
output <- subsetWF(WF, slot="output", subset=1, index=1)
step.cmd <- subsetWF(WF, slot="step", subset=1) ## subset all the HISAT2 commandline
subsetWF(WF, slot="output", subset=1, index=1, delete=TRUE) ## in order to delete the subset files list

symLink2bam Symbolic links for IGV

Description

Function for creating symbolic links to view BAM files in a genome browser such as IGV.

Usage

symLink2bam(sysargs, command="ln -s", htmldir, ext = c(".bam", ".bai"), urlbase, urlfile)

Arguments

sysargs Object of class SYSargs or SYSargs2 or named character vector with BAM
files PATH and the elements names should be the sampleID.

command Shell command, defaults to "ln -s"

htmldir Path to HTML directory with http access.

86 sysargs

ext File name extensions to use for BAM and index files.

urlbase The base URL structure to use in URL file.

urlfile Name and path of URL file.

Value

symbolic links and url file

Author(s)

Thomas Girke

Examples

Construct SYSargs2 object from param and targets files
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args

Not run:
Run alignments
args <- runCommandline(args, dir = FALSE, make_bam = TRUE)

Create sym links and URL file for IGV
symLink2bam(sysargs=args, command="ln -s", htmldir=c("~/.html/", "somedir/"), ext=c(".bam", ".bai"), urlbase="http://myserver.edu/~username/", urlfile="IGVurl.txt")

End(Not run)

sysargs SYSargs accessor methods

Description

Methods to access information from SYSargs object.

Usage

sysargs(x)

Arguments

x object of class SYSargs

Value

various outputs

Author(s)

Thomas Girke

SYSargs-class 87

Examples

Construct SYSargs object from param and targets files
param <- system.file("extdata", "hisat2.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); modules(args); cores(args); outpaths(args); sysargs(args)

SYSargs-class Class "SYSargs"

Description

S4 class container for storing parameters of command-line- or R-based software. SYSargs instances
are constructed by the systemArgs function from two simple tabular files: a targets file and a
param file. The latter is optional for workflow steps lacking command-line software. Typically, a
SYSargs instance stores all sample-level inputs as well as the paths to the corresponding outputs
generated by command-line- or R-based software generating sample-level output files. Each sample
level input/outfile operation uses its own SYSargs instance. The outpaths of SYSargs usually define
the sample inputs for the next SYSargs instance. This connectivity is achieved by writing the
outpaths with the writeTargetsout function to a new targets file that serves as input to the next
systemArgs call. By chaining several SYSargs steps together one can construct complex workflows
involving many sample-level input/output file operations with any combination of command-line or
R-based software.

Objects from the Class

Objects can be created by calls of the form new("SYSargs", ...).

Slots

targetsin: Object of class "data.frame" storing tabular data from targets input file

targetsout: Object of class "data.frame" storing tabular data from targets output file

targetsheader: Object of class "character" storing header/comment lines of targets file

modules: Object of class "character" storing software versions from module system

software: Object of class "character" name of executable of command-line software

cores: Object of class "numeric" number of CPU cores to use

other: Object of class "character" additional arguments

reference: Object of class "character" path to reference genome file

results: Object of class "character" path to results directory

infile1: Object of class "character" paths to first FASTQ file

infile2: Object of class "character" paths to second FASTQ file if data is PE

outfile1: Object of class "character" paths to output files generated by command-line software

sysargs: Object of class "character" full commands used to execute external software

outpaths: Object of class "character" paths to final outputs including postprocessing by Rsamtools

88 SYSargs-class

Methods

SampleName signature(x = "SYSargs"): extracts sample names

[signature(x = "SYSargs"): subsetting of class with bracket operator

coerce signature(from = "list", to = "SYSargs"): as(list, "SYSargs")

cores signature(x = "SYSargs"): extracts data from cores slot

infile1 signature(x = "SYSargs"): extracts data from infile1 slot

infile2 signature(x = "SYSargs"): extracts data from infile2 slot

modules signature(x = "SYSargs"): extracts data from modules slot

names signature(x = "SYSargs"): extracts slot names

length signature(x = "SYSargs"): extracts number of samples

other signature(x = "SYSargs"): extracts data from other slot

outfile1 signature(x = "SYSargs"): extracts data from outfile1 slot

outpaths signature(x = "SYSargs"): extracts data from outpath slot

reference signature(x = "SYSargs"): extracts data from reference slot

results signature(x = "SYSargs"): extracts data from results slot

show signature(object = "SYSargs"): summary view of SYSargs objects

software signature(x = "SYSargs"): extracts data from software slot

targetsheader signature(x = "SYSargs"): extracts data from targetsheader slot

targetsin signature(x = "SYSargs"): extracts data from targetsin slot

targetsout signature(x = "SYSargs"): extracts data from targetsout slot

Author(s)

Thomas Girke

See Also

systemArgs and runCommandline

Examples

showClass("SYSargs")
Construct SYSargs object from param and targets files
param <- system.file("extdata", "tophat.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); targetsin(args); targetsout(args); targetsheader(args);
software(args); modules(args); cores(args); outpaths(args)
sysargs(args); other(args); reference(args); results(args); infile1(args)
infile2(args); outfile1(args); SampleName(args)

Return sample comparisons
readComp(args, format = "vector", delim = "-")

The subsetting operator '[' allows to select specific samples
args[1:4]

SYSargs2-class 89

Not run:
Execute SYSargs on single machine
runCommandline(args=args)

Execute SYSargs on multiple machines
qsubargs <- getQsubargs(queue="batch", Nnodes="nodes=1", cores=cores(args),

memory="mem=10gb", time="walltime=20:00:00")
qsubRun(appfct="runCommandline(args=args)", appargs=args, qsubargs=qsubargs,

Nqsubs=1, submitdir="results", package="systemPipeR")

Write outpaths to new targets file for next SYSargs step
writeTargetsout(x=args, file="default")

End(Not run)

SYSargs2-class Class "SYSargs2"

Description

SYSargs2 class stores all the information and instructions needed for processing a set of input files
with a specific command-line or a series of command-line within a workflow. The SYSargs2 S4
class object is created from the loadWF and renderWF function, which populates all the command-
line for each sample in each step of the particular workflow. Each sample level input/outfile oper-
ation uses its own SYSargs2 instance. The output of SYSargs2 define all the expected output files
for each step in the workflow, which usually it is the sample input for the next step in an SYSargs2
instance. By chaining several SYSargs2 steps together one can construct complex workflows in-
volving many sample-level input/output file operations with any combination of command-line or
R-based software.

Objects from the Class

Objects can be created by calls of the form new("SYSargs2", ...).

Slots

targets: Object of class "list" storing data from each sample from targets file
targetsheader: Object of class "list" storing header/comment lines of targets file
modules: Object of class "list" storing software versions from module system
wf: Object of class "list" storing data from Workflow CWL parameters file
clt: Object of class "list" storing data from each CommandLineTool substep in the Workflow or

the single CommandLineTool CWL parameters file
yamlinput: Object of class "list" storing data from input (*.yml) file
cmdlist: Object of class "list" storing all command-line used to execute external software
input: Object of class "list" storing data from each target defined in inputvars

output: Object of class "list" paths to final outputs files
files: Object of class "list" paths to input and CWL parameters files
inputvars: Object of class "list" storing data from each inputvars

cmdToCwl: Object of class "list" storing data from each cmdToCwl

status: Object of class "list" storing data from each status

internal_outfiles: Object of class "list" storing raw data from each output

90 SYSargs2-class

Methods

[Subsetting of class with bracket operator.

[[Subsetting of class with bracket operator.

[[<- Replacement method for "SYSargs2" class.

$ Extracting slots elements by name.

length Extracts number of samples.

names Extracts slot names.

show Summary view of SYSargs2 objects.

coerce signature(from = "list", to = "SYSargs2"): as(list, "SYSargs2")

coerce signature(from = "SYSargs2", to = "list")as(SYSargs2, "list")

coerce signature(from = "SYSargs2", to = "DataFrame"): as(x, "DataFrame"); for targets
slot.

sysargs2 Coerce back to list as(SYSargs2, "list")

targets Extract data from targets slot.

targetsheader Extracts data from targetsheader slot.

modules Extracts data from modules slot.

wf Extracts data from wf slot.

clt Extracts data from clt slot.

yamlinput Extracts data from yamlinput slot.

cmdlist Extracts data from cmdlist slot.

input Extracts data from input slot.

output Extracts data from cmdlist slot.

files Extracts data from files slot.

inputvars Extracts data from inputvars slot.

cmdToCwl Extracts data from cmdToCwl slot.

status Extracts data from status slot.

infile1 extracting paths to first FASTQ file.

infile2 extracting paths to second FASTQ file if data is PE.

baseCommand Extracts baseCommand from command-line used to execute external software.

SampleName Extracts all samples names.

yamlinput<- Replacement method for yamlinput slot input.

Author(s)

Daniela Cassol and Thomas Girke

See Also

loadWF and renderWF and runCommandline and clusterRun

SYSargs2-class 91

Examples

showClass("SYSargs2")

Construct SYSargs2 object from CWl param, CWL input, and targets files
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targetspath,

wf_file="example/workflow_example.cwl",
input_file="example/example.yml",
dir_path=dir_path)

WF <- renderWF(WF, inputvars=c(Message = "_STRING_", SampleName = "_SAMPLE_"))
WF

Methods
names(WF)
length(WF)
baseCommand(WF)
SampleName(WF)

Accessors
targets(WF)
targetsheader(WF)
modules(WF)
yamlinput(WF)
cmdlist(WF)
input(WF)
output(WF)
files(WF)
inputvars(WF)
cmdToCwl(WF)
status(WF)

The subsetting operator '[' allows to select specific command-line/sample
WF2 <- WF[1:2]

Not run:
Execute SYSargs2 on single machine
WF2 <- runCommandline(WF2)

End(Not run)
Not run:
Execute SYSargs2 on multiple machines of a compute cluster. The following
example uses the conf and template files for the Slurm scheduler. Please
read the instructions on how to obtain the corresponding files for other schedulers.
file.copy(system.file("extdata", ".batchtools.conf.R", package="systemPipeR"), ".")
file.copy(system.file("extdata", "batchtools.slurm.tmpl", package="systemPipeR"), ".")
resources <- list(walltime=120, ntasks=1, ncpus=4, memory=1024)
reg <- clusterRun(WF, FUN = runCommandline, conffile=".batchtools.conf.R",

template="batchtools.slurm.tmpl", Njobs=2, runid="01", resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)

End(Not run)

92 SYSargsList

SYSargsList SYSargsList Constructor

Description

SYSargsList instances are constructed by the SYSargsList function.

Usage

SYSargsList(sysargs = NULL, step_name = "default",
targets = NULL, wf_file = NULL, input_file = NULL, dir_path = ".",
id = "SampleName",
inputvars = NULL, rm_targets_col = NULL,
dir = TRUE, dependency = NA,
run_step = "mandatory",
run_session = "management",
run_remote_resources = NULL,
silent = FALSE,
projPath = getOption("projPath", getwd()))

Arguments

sysargs SYSargs2 object. If the object already exists, it can be used to construct the
SYSargsList object.

step_name character with the step index name.

targets the path to targets file. The targets file can be either a simple tabular or yml
file. Also, it is possible to assign NULL to run the pipeline without the ’targets’
file. This can be useful for running specific workflows that do not require input
files.

wf_file name and path to CWL parameters file.

input_file name and path to input parameters file.

dir_path full path to the directory with the CWL parameters and input files.

id A column from targets file, which will be used as an id for each one of the
samples. It is required to be unique.

inputvars Each vector element is required to be defined in the input file, and the names
of the elements are needed to match the column names defined in the targets
file.

rm_targets_col targets file colunms to be removed.

dir This option allows creating an exclusive results folder for each step in the work-
flow. All the outfiles and log files for the particular step will be created in the
respective folders. Default is dir=TRUE.

dependency character. Dependency tree, required when appending this step to the workflow.
Character name of a previous step in the workflow. Default is NA.

run_step character. If the step has "mandatory" or "optional" flag for the execution.

run_session character. If the step has "management" or "compute" flag for the execution.

SYSargsList-class 93

run_remote_resources

List for reserving for each cluster job sufficient computing resources including
memory (Megabyte), number of nodes (Int), CPU cores, walltime (Minutes),
etc. It is necessary two additional files: conffile and template. conffile
is the path to configuration file (default location ./.batchtools.conf.R). This
file contains in its simplest form just one command, such as this line for the
scheduler: cluster.functions <- makeClusterFunctionsSlurm(template="batchtools.slurm.tmpl").
For more detailed information visit this page: https://mllg.github.io/batchtools/index.html
template The template files for a specific queueing/scheduling systems can be
downloaded from here: https://github.com/mllg/batchtools/tree/master/inst/templates.
Slurm, PBS/Torque, and Sun Grid Engine (SGE) templates are provided within
the package demo data.

silent If set to TRUE, all messages returned by the function will be suppressed.

projPath a character vector of a full project path name. Default is the current path.

Author(s)

Daniela Cassol

See Also

SYSargs2, LineWise, and SPRproject

Examples

sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt",

package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl",
input_file="example/example.yml",
dir_path = system.file("extdata/cwl",
package="systemPipeR"),
inputvars = c(Message = "_STRING_",
SampleName = "_SAMPLE_"))

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

},
step_name = "R_read",
dependency = "echo")

sal

SYSargsList-class Class "SYSargsList"

94 SYSargsList-class

Description

SYSargsList S4 class is a list-like container where each instance stores all the input/output paths
and parameter components required for a particular data analysis step based on command-line- or
R-based software.

SYSargsList instances are constructed by the SYSargsList function.

Usage

Accessors

stepsWF(x)
statusWF(x)
targetsWF(x)
outfiles(x)
SE(x, ...)
dependency(x)
projectInfo(x)
runInfo(x)

Methods

cmdlist(x, ...)
codeLine(x, ...)
SampleName(x, ...)
stepName(x)
baseCommand(x, ...)
targetsheader(x, ...)
yamlinput(x, ...)
viewEnvir(x, silent = FALSE)
copyEnvir(x, list = character(), new.env = globalenv(), silent = FALSE)
addResources(x, step, resources)

Subset Methods

subset(x, ...)
getColumn(x, step, position = c("outfiles", "targetsWF"), column = 1,

names = SampleName(x, step))

Replacement

appendStep(x, after = length(x), ...) <- value
yamlinput(x, paramName, ...) <- value
replaceStep(x, step, step_name = "default") <- value
renameStep(x, step, ...) <- value
dependency(x, step, ...) <- value
appendCodeLine(x, after = length(x), ...) <- value
replaceCodeLine(x, line, ...) <- value
updateColumn(x, step, position = c("outfiles", "targetsWF")) <- value

Arguments

x An instance of class SYSargsList.

SYSargsList-class 95

step character or numeric. Workflow step name or position index.

silent If set to TRUE, all messages returned by the function will be suppressed.

list a character vector naming objects to be copyied from the enviroment.

new.env An environment to copy to. Default is globalenv().

resources List for reserving for each cluster job sufficient computing resources including
memory (Megabyte), number of nodes (Int), CPU cores, walltime (Minutes),
etc. It is necessary two additional files: conffile and template. conffile
is the path to configuration file (default location ./.batchtools.conf.R). This
file contains in its simplest form just one command, such as this line for the
scheduler: cluster.functions <- makeClusterFunctionsSlurm(template="batchtools.slurm.tmpl").
For more detailed information visit this page: https://mllg.github.io/batchtools/index.html.
template The template files for a specific queueing/scheduling systems can be
downloaded from here: https://github.com/mllg/batchtools/tree/master/inst/templates.
Slurm, PBS/Torque, and Sun Grid Engine (SGE) templates are provided within
the package demo data.

position character. Options are "outfiles" or "targetsWF" slots.

column character or numeric. Which column will be subset from the position argu-
ment.

names character vector. Names of the workflow step.

after A subscript, after which the values are to be appended.

paramName character. Input name from yamlinput(x), which value should be replaced.

step_name character with the new step name. Default value will automatically give a name:
step_<step index position>.

line numeric. Index position of the code line to be added or replaced.

value object containing the values to be replaced to SYSargsList. Values may be of
the same class as the orginal values. For updateColumn<- a DataFrame must
have the same rows as the original DataFrame. However, if there is no col-
umn/rows in the original DataFrame, the new DataFrame will replace the empty
one. If there is a non-empty DataFrame, any existing columns with the same
name as this new DataFrame will be replaced. Any columns that do not exist in
the original DataFrame will be added to the original DataFrame.

... Further arguments to be passed to or from other methods.

Objects from the Class

Objects can be created by calls of the form new("SYSargsList", ...).

Slots

stepsWF: Object of class "list" storing all the steps objects of the workflow. Each step can either
be SYSargs2 or LineWise.

statusWF: Object of class "list" storing all the success and failure of each step in the workflow.

targetsWF: Object of class "list" storing all the targets DataFrame for each step in the workflow.
For the LineWise steps, a DataFrame with 0 rows and 0 columns will be displayed.

outfiles: Object of class "list" storing all the output DataFrame for each step in the workflow.
For the LineWise steps, a DataFrame with 0 rows and 0 columns will be displayed.

SE: Object of class "list" storing all the SummarizedExperiment objects in the workflow.

96 SYSargsList-class

dependency: Object of class "list" storing all the dependency graphs in the workflow.

projectInfo: Object of class "list" storing all the projectInfo information of the workflow.

runInfo: Object of class "list" storing all the runInfo information of each step in the workflow.

targets_connection: Object of class "list" storing all targets files connection in the workflow.

Methods

[signature(x = "SYSargsList", i = "ANY", j = "ANY", drop = "ANY"): subsetting of class with
bracket operator

[[signature(x = "SYSargsList", i = "ANY", j = "ANY"): subsetting of class with bracket oper-
ator

$ signature(x = "SYSargsList"): extracting slots elements by name

coerce signature(from = "list", to = "SYSargsList"): as(list, "SYSargsList")

coerce signature(from = "SYSargsList", to = "list"): as(SYSargsList, "list")

sysargslist signature(x = "SYSargsList"): Coerce back to list as(SYSargsList, "list")

length signature(x = "SYSargsList"): extracts number of SYSargsList steps

names signature(x = "SYSargsList"): extracts slot names

show signature(object = "SYSargsList"): summary view of SYSargsList steps

stepsWF signature(x = "SYSargsList"): extract data from stepsWF slot

statusWF signature(x = "SYSargsList"): extract data from statusWF slot

targetsWF signature(x = "SYSargsList"): extract data from targetsWF slot

outfiles signature(x = "SYSargsList"): extract data from outfiles slot

SE signature(x = "SYSargsList"): extract data from SE slot

dependency signature(x = "SYSargsList"): extract data from dependency slot

projectInfo signature(x = "SYSargsList"): extract data from projectInfo slot

runInfo signature(x = "SYSargsList"): extract data from runInfo slot

cmdlist signature(x = "SYSargsList", ...): extracts data from cmdlist slot for each SYSargs2
step

codeLine signature(x = "SYSargsList", step): extracts data from codeLine slot for LineWise
step

SampleName signature(x = "SYSargsList", step): extracts Sample ID from SYSargs2 in-
stance step

stepName signature(x = "SYSargsList"): extracts steps names from workflow instance

baseCommand signature(x = "SYSargsList", step): extracts baseCommand from SYSargs2
instance step

targetsheader signature(x = "SYSargsList", step): extracts targetsheader from SYSargs2
instance step

yamlinput signature(x = "SYSargsList", step): extracts data from yamlinput slot for each
SYSargs2 step

viewEnvir signature(x = "SYSargsList", silent = FALSE): return a vector of character strings
giving the names of the objects in the SYSargsList environment

copyEnvir signature(x = "SYSargsList", list = character(), new.env = globalenv(), silent
= FALSE): copy of the contents or select objects from SYSargsList environment and place
them into new.env

SYSargsList-class 97

addResources signature(x = "SYSargsList", step, resources): Adds the computing resources
for one or multiple steps in the workflow. If the particular step(s) is set to be executed "man-
agement section," when the resources is added, the step(s) will be executed on the "compute
section."

getColumn signature(x = "SYSargsList", step, position = c("outfiles", "targetsWF"),
column = 1, names = SampleName(x, step)): extracts the information for targetsWF or outfiles
slots. The information can be used in an R code downstream

[[<- signature(x = "SYSargsList", i = "ANY", j = "ANY", value = "ANY"): replacement method
for SYSargsList class

appendStep<- signature(x = "SYSargsList", after = length(x)): insert the SYSargsList or
LineWise object onto x at the position given by after

yamlinput<- signature(x = "SYSargsList", step, paramName): replace a value in the yamlinput
slot for a specific step instance

replaceStep<- signature(x = "SYSargsList", step, step_name = "default"): replace a spe-
cific step in the workflow instance

renameStep<- signature(x = "SYSargsList"): rename a stepName in the workflow instance

dependency<- signature(x = "SYSargsList", step): replace dependency graph for a specific
step instance

appendCodeLine<- signature(x = "SYSargsList", step, after = length(x)): insert the R
code in a specific step at the position given by after

replaceCodeLine<- signature(x = "SYSargsList", step, line): replace the R code in a spe-
cific step at the position given by line

updateColumn<- signature(x = "SYSargsList", step, position = c("outfiles", "targetsWF")):
update or add a new column in targetsWF or outfiles slots

Author(s)

Daniela Cassol and Thomas Girke

See Also

SYSargs2, LineWise, and SPRproject

Examples

sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt",

package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl",
input_file="example/example.yml",
dir_path = system.file("extdata/cwl",
package="systemPipeR"),
inputvars = c(Message = "_STRING_",
SampleName = "_SAMPLE_"))

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

98 SYSargsList-class

},
step_name = "R_read",
dependency = "echo")

sal

length(sal)
names(sal)

Accessors

stepsWF(sal)
statusWF(sal)
targetsWF(sal)
outfiles(sal)
SE(sal)
dependency(sal)
projectInfo(sal)
runInfo(sal)

Methods

cmdlist(sal, step=1, targets=1:2) ## SYSargs2 step
codeLine(sal, step=2) ## LineWise step
SampleName(sal, step="echo")
stepName(sal)
baseCommand(sal, 1) ## SYSargs2 step
targetsheader(sal, step=1) ## SYSargs2 step
yamlinput(sal, step=1) ## SYSargs2 step
viewEnvir(sal)
copyEnvir(sal, list = character(), new.env = globalenv())

resources <- list(conffile= system.file("extdata/.batchtools.conf.R",
package="systemPipeR"),

template= system.file("extdata/batchtools.slurm.tmpl",
package="systemPipeR"),

Njobs=3, ## Usually, the samples number
walltime=60, ## minutes
ntasks=1,
ncpus=4,
memory=1024 ## Mb

)
addResources(sal, 1, resources= resources)

Subset Methods

sal_sub <- subset(sal, subset_steps=1, input_targets=1:2, keep_steps = TRUE)
sal_sub
targetsIn <- getColumn(sal, step=1, position = c("outfiles"))
targetsIn

Replacement
renameStep(sal, step=1) <- "new_echo"
dependency(sal, step=2) <- "new_echo"
updateColumn(sal, step=2, position = c("targetsWF")) <- data.frame(targetsIn)
targetsWF(sal)

replaceStep(sal, step=2) <- LineWise(code = {

systemArgs 99

hello <- "Printing a new message"
},
step_name = "R_hello",
dependency = "new_echo")

codeLine(sal)
yamlinput(sal, step=1, paramName="results_path") <- list(results_path=list(

class="Directory", path="./data"))
cmdlist(sal, step = 1, targets = 1)
appendCodeLine(sal, step=2, after = 0) <- "log <- log(10)"
codeLine(sal, 2)
replaceCodeLine(sal, step=2, line=1) <- LineWise(code = {

log <- log(50)
})

codeLine(sal, 2)

systemArgs Constructs SYSargs object from param and targets files

Description

Constructs SYSargs S4 class objects from two simple tablular files: a targets file and a param
file. The latter is optional for workflow steps lacking command-line software. Typically, a SYSargs
instance stores all sample-level inputs as well as the paths to the corresponding outputs generated
by command-line- or R-based software generating sample-level output files. Each sample level
input/outfile operation uses its own SYSargs instance. The outpaths of SYSargs usually define
the sample inputs for the next SYSargs instance. This connectivity is established by writing the
outpaths with the writeTargetsout function to a new targets file that serves as input to the next
systemArgs call. By chaining several SYSargs steps together one can construct complex workflows
involving many sample-level input/output file operations with any combinaton of command-line or
R-based software.

Usage

systemArgs(sysma, mytargets, type = "SYSargs")

Arguments

sysma path to ’param’ file; file structure follows a simple name/value syntax that con-
verted into JSON format; for details about the file structure see sample files
provided by package. Assign NULL to run the pipeline without ’param’ file. This
can be useful for running partial workflows, e.g. with pregenerated BAM files.

mytargets path to targets file

type type="SYSargs" returns SYSargs, type="json" returns param file content in
JSON format (requires rjson library)

Value

SYSargs object or character string in JSON format

Author(s)

Thomas Girke

100 targets.as.df

See Also

showClass("SYSargs")

Examples

Construct SYSargs object from param and targets files
param <- system.file("extdata", "tophat.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
args
names(args); modules(args); cores(args); outpaths(args); sysargs(args)

Not run:
Execute SYSargs on single machine
runCommandline(args=args)

Execute SYSargs on multiple machines of a compute cluster
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)

Monitor progress of submitted jobs
getStatus(reg=reg)
file.exists(outpaths(args))
sapply(1:length(args), function(x) loadResult(reg, x)) # Works once all jobs have completed successfully.

Alignment stats
read_statsDF <- alignStats(args)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")

Write outpaths to new targets file for next SYSargs step
writeTargetsout(x=args, file="default")

End(Not run)

targets.as.df Convert targets to list or data.frame

Description

Convert targets files to list or data.frame object.

Usage

targets.as.df(x)
targets.as.list(x, id="SampleName")

Arguments

x An object of the class "list" or "data.frame" that stores data from each target
file, as targets(WF).

id A column from targets file, which will be used as an id for each one of the
samples. It is required to be unique.

trimbatch 101

Value

data.frame or list containing all the targets file information.

Author(s)

Daniela Cassol

See Also

showClass("SYSargs2")

Examples

targetspath <- system.file("extdata", "targets.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
targetslist <- targets.as.list(x=targets)
targets.as.df(x=targetslist)

trimbatch Genome read coverage by transcript models

Description

Trims adaptors hierarchically from longest to shortest match from right end of read. ## If ’inter-
nalmatch=TRUE’ then internal matches will trigger the same behavior. The ## argument minpat-
ternlength defines shortest adaptor match to consider for reads ## containing only partial adaptors
at the right end.

Usage

trimbatch(fq, pattern, internalmatch=FALSE, minpatternlength=8,
Nnumber=1, polyhomo=100, minreadlength=18,
maxreadlength)

Arguments

fq character path to fastq file that contains the target sequences.

pattern character pattern used to trim the sequence.

internalmatch The default is FALSE. Trims adaptors hierarchically from longest to shortest
match from right end of read. If ’internalmatch=TRUE’ then internal matches
will trigger the same behavior.

minpatternlength

It defines shortest adaptor match to consider for reads containing only partial
adaptors at the right end.

Nnumber A numeric value representing a minimum criterion for the filter. It selects ele-
ments with fewer than Nnumber ’N’ symbols in each element.

polyhomo A numeric value representing a maximum criterion for the filter. It selects ele-
ments with fewer than threshold copies of any nucleotide.

minreadlength numeric value representing minimum read length.

maxreadlength numeric value representing maximun read length.

102 tryCMD

Author(s)

Thomas Girke

Examples

Preprocessing of paired-end reads
dir_path <- system.file("extdata/cwl/preprocessReads/trim-pe", package="systemPipeR")
targetspath <- system.file("extdata", "targetsPE.txt", package="systemPipeR")
trim <- loadWorkflow(targets=targetspath, wf_file="trim-pe.cwl", input_file="trim-pe.yml", dir_path=dir_path)
trim <- renderWF(trim, inputvars=c(FileName1="_FASTQ_PATH1_", FileName2="_FASTQ_PATH2_", SampleName="_SampleName_"))
trim
Not run:
iterTrim <- "trimbatch(fq, pattern='ACACGTCT', internalmatch=FALSE, minpatternlength=6, Nnumber=1, polyhomo=50, minreadlength=16, maxreadlength=101)"
preprocessReads(args=trim[1], Fct=iterTrim, batchsize=100000, overwrite=TRUE, compress=TRUE)

End(Not run)

tryCMD Collect information about the third-party software

Description

Function to check if third-party software or utility is installed and set in the PATH.

Usage

tryCMD(command, silent = FALSE)

Arguments

command a character vector containing the command line name to be tested.

silent If set to TRUE, all messages returned by the function will be suppressed.

Value

It will return a positive message if the software is set on the PATH or an error message if the software
is not set it.

Note

Please note that not necessary the software is not installed if the message indicates an error, but it
has not been exported on the current PATH.

Author(s)

Danela Cassol

tryPath 103

Examples

Not run:
tryCMD(command="R")
tryCMD(command="blastp")
tryCMD(command="hisat2")

End(Not run)

tryPath Validation of the files or directories

Description

Function to check if the full path (file or directory) exists.

Usage

tryPath(path)

Arguments

path a character vector of full path name.

Details

This function produces a character vector of the file or directory name defined on the path argument.

Value

A character vector containing the name of the file or directory. If the path does not exist, it will
return an error message.

Author(s)

Daniela Cassol

Examples

file <- system.file("extdata/", "targets.txt", package="systemPipeR")
tryPath(path=file)

104 variantReport

variantReport Generate Variant Report

Description

Functions for generating tabular variant reports including genomic context annotations and confi-
dence statistics of variants. The annotations are obtained with utilities provided by the VariantAnnotation
package and the variant statistics are retrieved from the input VCF files.

Usage

Variant report
variantReport(files, txdb, fa, organism, out_dir = "results")

Combine variant reports
combineVarReports(files, filtercol, ncol = 15)

Create summary statistics of variants
varSummary(files)

Arguments

files named character vector with paths of the input VCF files.

txdb Annotation data stored as TranscriptDb object, which can be obtained from
GFF/GTF files, BioMart, Bioc Annotation packages, UCSC, etc. For details
see the vignette of the GenomicFeatures package. It is important to use here
matching versions of the txdb and fa objects. The latter is the genome sequence
used for read mapping and variant calling.

fa FaFile object pointing to the sequence file of the corresponding r eference
genome stored in FASTA format or a BSgenome instance.

organism Character vector specifying the organism name of the reference genome.

filtercol Named character vector containing in the name field the column titles to filter
on, and in the data field the corresponding values to include in the report. For
instance, the setting filtercol=c(Consequence="nonsynonymous") will in-
clude only nonsysynonymous variances listed in the Consequence column. To
omit the filtering step, one can use the setting filtercol="All".

ncol Integer specifying the number of columns in the tabular input files. Default is
set to 15.

out_dir Character vector of a results directory name. Default is results.

Value

Tabular output files.

Author(s)

Thomas Girke

variantReport 105

See Also

filterVars

Examples

Alignment with BWA (sequentially on single machine)
param <- system.file("extdata", "bwa.param", package="systemPipeR")
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
args <- systemArgs(sysma=param, mytargets=targets)
sysargs(args)[1]

Not run:
library(VariantAnnotation)
system("bwa index -a bwtsw ./data/tair10.fasta")
bampaths <- runCommandline(args=args)

Alignment with BWA (parallelized on compute cluster)
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)

Variant calling with GATK
The following creates in the inital step a new targets file
(targets_bam.txt). The first column of this file gives the paths to
the BAM files created in the alignment step. The new targets file and the
parameter file gatk.param are used to create a new SYSargs
instance for running GATK. Since GATK involves many processing steps, it is
executed by a bash script gatk_run.sh where the user can specify the
detailed run parameters. All three files are expected to be located in the
current working directory. Samples files for gatk.param and
gatk_run.sh are available in the subdirectory ./inst/extdata/ of the
source file of the systemPipeR package.
writeTargetsout(x=args, file="targets_bam.txt")
system("java -jar CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
system("java -jar /opt/picard/1.81/CreateSequenceDictionary.jar R=./data/tair10.fasta O=./data/tair10.dict")
args <- systemArgs(sysma="gatk.param", mytargets="targets_bam.txt")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)
writeTargetsout(x=args, file="targets_gatk.txt")

Variant calling with BCFtools
The following runs the variant calling with BCFtools. This step requires in
the current working directory the parameter file sambcf.param and the
bash script sambcf_run.sh.
args <- systemArgs(sysma="sambcf.param", mytargets="targets_bam.txt")
resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
reg <- clusterRun(args, conffile=".batchtools.conf.R", template="batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources)
writeTargetsout(x=args, file="targets_sambcf.txt")

Filtering of VCF files generated by GATK
args <- systemArgs(sysma="filter_gatk.param", mytargets="targets_gatk.txt")
filter <- "totalDepth(vr) >= 2 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==4"
filter <- "totalDepth(vr) >= 20 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==6"
filterVars(args, filter, varcaller="gatk", organism="A. thaliana")
writeTargetsout(x=args, file="targets_gatk_filtered.txt")

Filtering of VCF files generated by BCFtools

106 vennPlot

args <- systemArgs(sysma="filter_sambcf.param", mytargets="targets_sambcf.txt")
filter <- "rowSums(vr) >= 2 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
filter <- "rowSums(vr) >= 20 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
filterVars(args, filter, varcaller="bcftools", organism="A. thaliana")
writeTargetsout(x=args, file="targets_sambcf_filtered.txt")

Annotate filtered variants from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

Annotate filtered variants from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
variantReport(args=args, txdb=txdb, fa=fa, organism="A. thaliana")

Combine results from GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_gatk.xls", quote=FALSE, row.names=FALSE, sep="\t")

Combine results from BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
combineDF <- combineVarReports(args, filtercol=c(Consequence="nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_sambcf.xls", quote=FALSE, row.names=FALSE, sep="\t")

Summary for GATK
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
write.table(varSummary(args), "./results/variantStats_gatk.xls", quote=FALSE, col.names = NA, sep="\t")

Summary for BCFtools
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
write.table(varSummary(args), "./results/variantStats_sambcf.xls", quote=FALSE, col.names = NA, sep="\t")

Venn diagram of variants
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_gatk_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_gatk <- overLapper(varlist, type="vennsets")
args <- systemArgs(sysma="annotate_vars.param", mytargets="targets_sambcf_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_bcf <- overLapper(varlist, type="vennsets")
vennPlot(list(vennset_gatk, vennset_bcf), mymain="", mysub="GATK: red; BCFtools: blue", colmode=2, ccol=c("blue", "red"))

End(Not run)

vennPlot Plot 2-5 way Venn diagrams

Description

Ploting function of 2-5 way Venn diagrams from ’VENNset’ objects or count set vectors. A useful
feature is the possiblity to combine the counts from several Venn comparisons with the same number
of label sets in a single Venn diagram.

vennPlot 107

Usage

vennPlot(x, mymain = "Venn Diagram", mysub = "default", setlabels = "default", yoffset = seq(0, 10, by = 0.34), ccol = rep(1, 31), colmode = 1, lcol = c("#FF0000", "#008B00", "#0000FF", "#FF00FF", "#CD8500"), lines = c("#FF0000", "#008B00", "#0000FF", "#FF00FF", "#CD8500"), mylwd = 3, diacol = 1, type = "ellipse", ccex = 1, lcex = 1, sepsplit = "_", ...)

Arguments

x VENNset or list of VENNset objects. Alternatively, a vector of Venn counts
or a list of vectors of Venn counts can be provided as input. If several Venn
comparisons are provided in a list then their results are combined in a single
Venn diagram, where the count sets are organized above each other.

mymain Main title of plot.

mysub Subtitle of plot. Default mysub="default" reports the number of unique items
in all sets, as well as the number of unique items in each individual set, respec-
tively.

setlabels The argument setlabels allows to provide a vector of custom sample labels.
However, assigning the proper names in the name slots of the initial setlist is
preferred for tracking purposes.

yoffset The results from several Venn comparisons can be combined in a single Venn
diagram by assigning to x a list with several VENNsets or count vectors. The
positonal offset of the count sets in the plot can be controlled with the yoffset
argument. The argument setting colmode allows to assign different colors to
each count set. For instance, with colmode=2 one can assign to ccol a color
vector or a list, such as ccol=c("blue", "red") or ccol=list(1:8, 8:1).

ccol Character or numeric vector to define colors of count values, e.g. ccol=c("black","black","red").

colmode See argument yoffset.

lcol Character or numeric vector to define colors of set labels, e.g. lcol=c("red",
"green")

lines Character or numeric vector to define colors of lines in plot.

mylwd Defines line width of shapes used in plot.

diacol See argument type.

type Defines shapes used to plot 4-way Venn diagram. Default type="ellipse" uses
ellipses. The setting type="circle" returns an incomplete 4-way Venn diagram
as circles. This representation misses two overlap sectors, but is sometimes
easier to navigate than the default ellipse version. The missing Venn intersects
are reported below the Venn diagram. Their font color can be controled with the
argument diacol.

ccex Controls font size for count values.

lcex Controls font size for set labels.

sepsplit Character used to separate sample labels in Venn counts.

... Additional arguments to pass on.

Value

Venn diagram plot.

Note

The functions provided here are an extension of the Venn diagram resources on this site: http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-
Venn-Diagrams

108 vennPlot

Author(s)

Thomas Girke

References

See examples in ’The Electronic Journal of Combinatorics’: http://www.combinatorics.org/files/Surveys/ds5/VennSymmExamples.html

See Also

overLapper, olBarplot

Examples

Sample data
setlist <- list(A=sample(letters, 18), B=sample(letters, 16),

C=sample(letters, 20), D=sample(letters, 22),
E=sample(letters, 18), F=sample(letters, 22))

2-way Venn diagram
vennset <- overLapper(setlist[1:2], type="vennsets")
vennPlot(vennset)

3-way Venn diagram
vennset <- overLapper(setlist[1:3], type="vennsets")
vennPlot(vennset)

4-way Venn diagram
vennset <- overLapper(setlist[1:4], type="vennsets")
vennPlot(list(vennset, vennset))

Pseudo 4-way Venn diagram with circles
vennPlot(vennset, type="circle")

5-way Venn diagram
vennset <- overLapper(setlist[1:5], type="vennsets")
vennPlot(vennset)

Alternative Venn count input to vennPlot (not recommended!)
counts <- sapply(vennlist(vennset), length)
vennPlot(counts)

6-way Venn comparison as bar plot
vennset <- overLapper(setlist[1:6], type="vennsets")
olBarplot(vennset, mincount=1)

Bar plot of standard intersect counts
interset <- overLapper(setlist, type="intersects")
olBarplot(interset, mincount=1)

Accessor methods for VENNset/INTERSECTset objects
names(vennset)
names(interset)
setlist(vennset)
intersectmatrix(vennset)
complexitylevels(vennset)
vennlist(vennset)

VENNset-class 109

intersectlist(interset)

Coerce VENNset/INTERSECTset object to list
as.list(vennset)
as.list(interset)

Pairwise intersect matrix and heatmap
olMA <- sapply(names(setlist),

function(x) sapply(names(setlist),
function(y) sum(setlist[[x]] %in% setlist[[y]])))

olMA
heatmap(olMA, Rowv=NA, Colv=NA)

Presence-absence matrices for large numbers of sample sets
interset <- overLapper(setlist=setlist, type="intersects", complexity=2)
(paMA <- intersectmatrix(interset))
heatmap(paMA, Rowv=NA, Colv=NA, col=c("white", "gray"))

VENNset-class Class "VENNset"

Description

Container for storing Venn intersect results created by the overLapper function. The setlist slot
stores the original label sets as vectors in a list; intersectmatrix organizes the label sets in
a present-absent matrix; complexitylevels represents the number of comparisons considered for
each comparison set as vector of integers; and vennlist contains the Venn intersect vectors.

Objects from the Class

Objects can be created by calls of the form new("VENNset", ...).

Slots

setlist: Object of class "list": list of vectors

intersectmatrix: Object of class "matrix": binary matrix

complexitylevels: Object of class "integer": vector of integers

vennlist: Object of class "list": list of vectors

Methods

as.list signature(x = "VENNset"): coerces VENNset to list

coerce signature(from = "list", to = "VENNset"): as(list, "VENNset")

complexitylevels signature(x = "VENNset"): extracts data from complexitylevels slot

intersectmatrix signature(x = "VENNset"): extracts data from intersectmatrix slot

length signature(x = "VENNset"): returns number of original label sets

names signature(x = "VENNset"): extracts slot names

setlist signature(x = "VENNset"): extracts data from setlist slot

show signature(object = "VENNset"): summary view of VENNset objects

vennlist signature(x = "VENNset"): extracts data from vennset slot

110 writeTargets

Author(s)

Thomas Girke

See Also

overLapper, vennPlot, olBarplot, INTERSECTset-class

Examples

showClass("VENNset")

Sample data
setlist <- list(A=sample(letters, 18), B=sample(letters, 16),

C=sample(letters, 20), D=sample(letters, 22),
E=sample(letters, 18), F=sample(letters, 22))

Create VENNset
vennset <- overLapper(setlist[1:5], type="vennsets")
class(vennset)

Accessor methods for VENNset/INTERSECTset objects
names(vennset)
setlist(vennset)
intersectmatrix(vennset)
complexitylevels(vennset)
vennlist(vennset)

Coerce VENNset/INTERSECTset object to list
as.list(vennset)

writeTargets Write updated targets out to file from SYSargsList

Description

Convenience write function for generating targets files containing the paths to files generated by
input processes. These processes can be commandline- or R-based software. Typically, the paths to
the inputs are stored in the targets infile targetsWF(sysargs) for SYSargsList objects. Note: by
default the function cannot overwrite any existing files. If a file exists then the user has to explicitly
remove it or set overwrite=TRUE.

Usage

writeTargets(sysargs, step, file = "default", silent = FALSE, overwrite = FALSE)

Arguments

sysargs Object of class SYSargsList.
step character with the step name. To check all the names, please use stepName(sysargs).
file Name and path of the output file. If set to "default" then the name of the output

file will have the pattern ’targets_<stepName>.txt’.
silent If set to TRUE, all messages returned by the function will be suppressed.
overwrite If set to TRUE, existing files of same name will be overwritten.

writeTargetsout 111

Value

Writes tabular targes files containing the header/comment lines from stepsWF(sysargs)[[step]][["targetsheader"]]
and the columns from targetsWF(sysargs)[[step]].

Author(s)

Daniela Cassol

Examples

Construct SYSargsList object from Rmd file
sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl", input_file="example/example.yml",

dir_path = system.file("extdata/cwl", package="systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

},
step_name = "R_read",
dependency = "echo")

writeTargets(sal, "echo")

writeTargetsout Write updated targets out to file

Description

Convenience write function for generating targets files with updated FileName columns containing
the paths to files generated by input/output processes. These processes can be commandline- or R-
based software. Typically, the paths to the inputs are stored in the targets infile (targetsin(args)
for SYSargs objects or targets.as.df(targets(WF)) for SYSargs2 objects) and the outputs are
stored in the targets outfile (targetsout(args) for SYSargs objects or output(WF)) for SYSargs2
objects. Note: by default the function cannot overwrite any existing files. If a file exists then the
user has to explicitly remove it or set overwrite=TRUE.

Usage

writeTargetsout(x, file = "default", silent = FALSE, overwrite = FALSE, step = NULL, new_col=NULL, new_col_output_index=NULL, remove=FALSE, ...)

Arguments

x Object of class SYSargs or SYSargs2.

file Name and path of the output file. If set to "default" then the name of the out-
put file will have the pattern ’targets_<software>.txt’, where <software> will be
what software(x) returns, when x is an object of class SYSargs. For an object
of class SYSargs2, the output file will have the pattern ’targets_<software>_<step>.txt’,
where <software> will be the workflow name (files(x)$cwl) and <step> will
be the step chosen in the argument step.

112 writeTargetsRef

silent If set to TRUE, all messages returned by the function will be suppressed.

overwrite If set to TRUE, existing files of same name will be overwritten.

step Name or numeric position of the step in the workflow to write the output files.
The names can be check running names(x$clt).

new_col A vector of character strings of the new column name to add to target file.
new_col_output_index

A vector of numeric index positions of the file in SYSargs2 class output. It
requires new_col definition.

remove To remove the original columns. Default is FALSE.

... To pass on additional arguments.

Value

Writes tabular targes files containing the header/comment lines from targetsheader(x) and the
columns from targetsout(x).

Author(s)

Daniela Cassol and Thomas Girke

See Also

writeTargetsRef

Examples

##
Examples with \code{SYSargs2} object
##
Construct SYSargs2 object
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl",

input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
WF
Write targets out file
names(WF$clt)
writeTargetsout(x=WF, file="default", step=1, new_col=c("sam_file"), new_col_output_index=c(1))

writeTargetsRef Generate targets file with reference

Description

Generates targets file with sample-wise reference as required for some NGS applications, such as
ChIP-Seq containing input samples. The reference sample information needs to be provided in the
input file in a column called SampleReference where the values reference the labels used in the
SampleName column. Sample rows without reference assignments will be removed automatically.

write_SYSargsList 113

Usage

writeTargetsRef(infile, outfile, silent = FALSE, overwrite = FALSE, ...)

Arguments

infile Path to input targets file.
outfile Path to output targets file.
silent If set to TRUE, all messages returned by the function will be suppressed.
overwrite If set to TRUE, existing files of same name will be overwritten.
... To pass on additional arguments.

Value

Generates modified targets file with the paths to the reference samples in the second column named
FileName2. Note, sample rows not assigned reference samples are removed automatically.

Author(s)

Thomas Girke

See Also

writeTargetsout, mergeBamByFactor

Examples

Path to input targets file
targets <- system.file("extdata", "targets_chip.txt", package="systemPipeR")

Not run:
Write modified targets file with reference (e.g. input) sample
writeTargetsRef(infile=targets, outfile="~/targets_refsample.txt", silent=FALSE, overwrite=FALSE)

End(Not run)

write_SYSargsList Writeout SYSargsList object

Description

Function to writeout SYSargsList workflow control environment (S4 object) object.

Usage

write_SYSargsList(sysargs, sys.file=".SPRproject/SYSargsList.yml", silent=TRUE)

Arguments

sysargs object of class SYSargsList.
sys.file name and path of the SYSargsList file which will store all the project configura-

tion information. Default is .SPRproject/SYSargsList.yml.
silent if set to TRUE, all messages returned by the function will be suppressed.

114 write_SYSargsList

Value

write_SYSargsList will return a sys.file path.

Author(s)

Daniela Cassol

See Also

See also as SYSargsList-class.

Examples

Construct SYSargsList object from Rmd file
sal <- SPRproject(overwrite=TRUE)
targetspath <- system.file("extdata/cwl/example/targets_example.txt", package="systemPipeR")

Constructor and `appendStep<-`
appendStep(sal) <- SYSargsList(step_name = "echo",

targets=targetspath, dir=TRUE,
wf_file="example/workflow_example.cwl", input_file="example/example.yml",

dir_path = system.file("extdata/cwl", package="systemPipeR"),
inputvars = c(Message = "_STRING_", SampleName = "_SAMPLE_"))

appendStep(sal) <- LineWise(code = {
hello <- lapply(getColumn(sal, step=1, 'outfiles'), function(x) yaml::read_yaml(x))

},
step_name = "R_read",
dependency = "echo")

sal <- write_SYSargsList(sal)
sal

Index

∗ classes
catDB-class, 6
EnvModules-class, 19
INTERSECTset-class, 36
LineWise-class, 37
SYSargs-class, 87
SYSargs2-class, 89
SYSargsList-class, 93
VENNset-class, 109

∗ methods
addAssay-methods, 4

∗ package
systemPipeR-package, 3

∗ utilities
alignStats, 5
catmap, 8
check.output, 9
clusterRun, 10
config.param, 12
configWF, 13
countRangeset, 14
createParam, 15
cwlFilesUpdate, 18
evalCode, 20
featureCoverage, 20
featuretypeCounts, 23
filterDEGs, 25
filterVars, 27
genFeatures, 29
GOHyperGAll, 31
importWF, 34
listCmdTools, 40
loadWorkflow, 41
mergeBamByFactor, 43
moduleload, 44
olBarplot, 45
olRanges, 47
output_update, 48
overLapper, 49
plotfeatureCoverage, 52
plotfeaturetypeCounts, 54
predORF, 59
preprocessReads, 61

printParam, 62
printParam2, 63
readComp, 66
renderLogs, 67
renderReport, 68
returnRPKM, 69
run_DESeq2, 75
run_edgeR, 76
runCommandline, 70
runDiff, 72
runWF, 73
sal2bash, 77
sal2rmd, 79
scaleRanges, 80
seeFastq, 81
SPRproject, 83
subsetWF, 84
symLink2bam, 85
sysargs, 86
SYSargsList, 92
systemArgs, 99
targets.as.df, 100
trimbatch, 101
tryCMD, 102
tryPath, 103
variantReport, 104
vennPlot, 106
write_SYSargsList, 113
writeTargets, 110
writeTargetsout, 111
writeTargetsRef, 112

[,EnvModules,ANY,ANY,ANY-method
(EnvModules-class), 19

[,LineWise,ANY,ANY,ANY-method
(LineWise-class), 37

[,SYSargs,ANY,ANY,ANY-method
(SYSargs-class), 87

[,SYSargs2,ANY,ANY,ANY-method
(SYSargs2-class), 89

[,SYSargsList,ANY,ANY,ANY-method
(SYSargsList-class), 93

[[,EnvModules,ANY,ANY-method
(EnvModules-class), 19

115

116 INDEX

[[,EnvModules,ANY,missing-method
(EnvModules-class), 19

[[,LineWise,ANY,missing-method
(LineWise-class), 37

[[,SYSargs2,ANY,missing-method
(SYSargs2-class), 89

[[,SYSargsList,ANY,missing-method
(SYSargsList-class), 93

[[<-,EnvModules,ANY,ANY,ANY-method
(EnvModules-class), 19

[[<-,EnvModules,ANY,ANY-method
(EnvModules-class), 19

[[<-,EnvModules-method
(EnvModules-class), 19

[[<-,LineWise,ANY,ANY,ANY-method
(LineWise-class), 37

[[<-,LineWise,ANY,ANY-method
(LineWise-class), 37

[[<-,SYSargs2,ANY,ANY,ANY-method
(SYSargs2-class), 89

[[<-,SYSargs2,ANY,ANY-method
(SYSargs2-class), 89

[[<-,SYSargsList,ANY,ANY,ANY-method
(SYSargsList-class), 93

[[<-,SYSargsList,ANY,ANY-method
(SYSargsList-class), 93

$,EnvModules-method (EnvModules-class),
19

$,LineWise-method (LineWise-class), 37
$,SYSargs2-method (SYSargs2-class), 89
$,SYSargsList-method

(SYSargsList-class), 93

addAssay (addAssay-methods), 4
addAssay,SummarizedExperiment-method

(addAssay-methods), 4
addAssay-methods, 4
addMetadata (addAssay-methods), 4
addMetadata,SummarizedExperiment-method

(addAssay-methods), 4
addMetadata-methods (addAssay-methods),

4
addResources (SYSargsList-class), 93
addResources,SYSargsList-method

(SYSargsList-class), 93
alignStats, 5
appendCodeLine,LineWise-method

(LineWise-class), 37
appendCodeLine<- (SYSargsList-class), 93
appendCodeLine<-,LineWise-method

(LineWise-class), 37
appendCodeLine<-,SYSargsList-method

(SYSargsList-class), 93

appendParam (printParam), 62
appendParam2 (printParam2), 63
appendStep<- (SYSargsList-class), 93
appendStep<-,SYSargsList-method

(SYSargsList-class), 93
as.list,INTERSECTset-method

(INTERSECTset-class), 36
as.list,VENNset-method (VENNset-class),

109
available_modules,EnvModules-method

(EnvModules-class), 19

baseCommand (SYSargsList-class), 93
baseCommand,SYSargs2-method

(SYSargs2-class), 89
baseCommand,SYSargsList-method

(SYSargsList-class), 93

catDB-class, 6
catlist (catmap), 8
catlist,catDB-method (catDB-class), 6
catlist-methods (catmap), 8
catmap, 8
catmap,catDB-method (catDB-class), 6
catmap-methods (catmap), 8
check.outfiles (check.output), 9
check.output, 9
clt (SYSargs2-class), 89
clt,SYSargs2-method (SYSargs2-class), 89
clusterRun, 10
cmdlist (SYSargsList-class), 93
cmdlist,SYSargs2-method

(SYSargs2-class), 89
cmdlist,SYSargsList-method

(SYSargsList-class), 93
cmdToCwl (SYSargs2-class), 89
cmdToCwl,SYSargs2-method

(SYSargs2-class), 89
cmdToCwl<- (SYSargs2-class), 89
cmdToCwl<-,SYSargs2-method

(SYSargs2-class), 89
codeChunkStart (LineWise-class), 37
codeChunkStart,LineWise-method

(LineWise-class), 37
codeLine (SYSargsList-class), 93
codeLine,LineWise-method

(LineWise-class), 37
codeLine,SYSargsList-method

(SYSargsList-class), 93
coerce,EnvModules,list-method

(EnvModules-class), 19
coerce,LineWise,list-method

(LineWise-class), 37

INDEX 117

coerce,list,catDB-method (catDB-class),
6

coerce,list,EnvModules-method
(EnvModules-class), 19

coerce,list,INTERSECTset-method
(INTERSECTset-class), 36

coerce,list,LineWise-method
(LineWise-class), 37

coerce,list,SYSargs-method
(SYSargs-class), 87

coerce,list,SYSargs2-method
(SYSargs2-class), 89

coerce,list,SYSargsList-method
(SYSargsList-class), 93

coerce,list,VENNset-method
(VENNset-class), 109

coerce,SYSargs2,list-method
(SYSargs2-class), 89

coerce,SYSargsList,list-method
(SYSargsList-class), 93

combineVarReports (variantReport), 104
complexitylevels (overLapper), 49
complexitylevels,INTERSECTset-method

(INTERSECTset-class), 36
complexitylevels,VENNset-method

(VENNset-class), 109
complexitylevels-methods (overLapper),

49
config.param, 12
configWF, 13
copyEnvir (SYSargsList-class), 93
copyEnvir,SYSargsList-method

(SYSargsList-class), 93
cores (sysargs), 86
cores,SYSargs-method (SYSargs-class), 87
cores-methods (sysargs), 86
countRangeset, 14
createParam, 15
createParamFiles (createParam), 15
cwlFilesUpdate, 18

default_modules,EnvModules-method
(EnvModules-class), 19

dependency (SYSargsList-class), 93
dependency,LineWise-method

(LineWise-class), 37
dependency,SYSargsList-method

(SYSargsList-class), 93
dependency<- (SYSargsList-class), 93
dependency<-,SYSargsList-method

(SYSargsList-class), 93
DESeq2::lfcShrink(), 75

EnvModules,EnvModules-method
(EnvModules-class), 19

EnvModules-class, 19
evalCode, 20

featureCoverage, 20
featuretypeCounts, 23
files (SYSargs2-class), 89
files,LineWise-method (LineWise-class),

37
files,SYSargs2-method (SYSargs2-class),

89
filterDEGs, 25
filterVars, 27

genFeatures, 29
getColumn (SYSargsList-class), 93
getColumn,SYSargsList-method

(SYSargsList-class), 93
goBarplot (GOHyperGAll), 31
GOCluster_Report (GOHyperGAll), 31
GOHyperGAll, 31
GOHyperGAll_Simplify (GOHyperGAll), 31
GOHyperGAll_Subset (GOHyperGAll), 31

idconv (catmap), 8
idconv,catDB-method (catDB-class), 6
idconv-methods (catmap), 8
importWF, 34, 37, 38
infile1 (sysargs), 86
infile1,SYSargs-method (SYSargs-class),

87
infile1,SYSargs2-method

(SYSargs2-class), 89
infile1-methods (sysargs), 86
infile2 (sysargs), 86
infile2,SYSargs-method (SYSargs-class),

87
infile2,SYSargs2-method

(SYSargs2-class), 89
infile2-methods (sysargs), 86
input (SYSargs2-class), 89
input,SYSargs2-method (SYSargs2-class),

89
inputvars (SYSargs2-class), 89
inputvars,SYSargs2-method

(SYSargs2-class), 89
internal_outfiles (SYSargs2-class), 89
internal_outfiles,SYSargs2-method

(SYSargs2-class), 89
intersectlist (overLapper), 49
intersectlist,INTERSECTset-method

(INTERSECTset-class), 36

118 INDEX

intersectlist-methods (overLapper), 49
intersectmatrix (overLapper), 49
intersectmatrix,INTERSECTset-method

(INTERSECTset-class), 36
intersectmatrix,VENNset-method

(VENNset-class), 109
intersectmatrix-methods (overLapper), 49
INTERSECTset-class, 36

length,INTERSECTset-method
(INTERSECTset-class), 36

length,LineWise-method
(LineWise-class), 37

length,SYSargs-method (SYSargs-class),
87

length,SYSargs2-method
(SYSargs2-class), 89

length,SYSargsList-method
(SYSargsList-class), 93

length,VENNset-method (VENNset-class),
109

LineWise (LineWise-class), 37
linewise (LineWise-class), 37
linewise,LineWise-method

(LineWise-class), 37
LineWise-class, 37
listCmdModules (listCmdTools), 40
listCmdTools, 40
loaded_modules,EnvModules-method

(EnvModules-class), 19
loadWF (loadWorkflow), 41
loadWorkflow, 41

makeCATdb (GOHyperGAll), 31
mergeBamByFactor, 43
module, 35
module (moduleload), 44
moduleAvail (moduleload), 44
moduleClear (moduleload), 44
modulecmd,EnvModules-method

(EnvModules-class), 19
moduleInit (moduleload), 44
modulelist (moduleload), 44
moduleload, 44
modules (SYSargs2-class), 89
modules,SYSargs-method (SYSargs-class),

87
modules,SYSargs2-method

(SYSargs2-class), 89
modules-methods (sysargs), 86
moduleUnload (moduleload), 44

names,catDB-method (catDB-class), 6

names,EnvModules-method
(EnvModules-class), 19

names,INTERSECTset-method
(INTERSECTset-class), 36

names,LineWise-method (LineWise-class),
37

names,SYSargs-method (SYSargs-class), 87
names,SYSargs2-method (SYSargs2-class),

89
names,SYSargsList-method

(SYSargsList-class), 93
names,VENNset-method (VENNset-class),

109

olBarplot, 45
olRanges, 47
other (sysargs), 86
other,SYSargs-method (SYSargs-class), 87
other-methods (sysargs), 86
outfile1 (sysargs), 86
outfile1,SYSargs-method

(SYSargs-class), 87
outfile1-methods (sysargs), 86
outfiles (SYSargsList-class), 93
outfiles,SYSargsList-method

(SYSargsList-class), 93
outpaths (sysargs), 86
outpaths,SYSargs-method

(SYSargs-class), 87
outpaths-methods (sysargs), 86
output (SYSargs2-class), 89
output,SYSargs2-method

(SYSargs2-class), 89
output_update, 48
overLapper, 49

plotfeatureCoverage, 52
plotfeaturetypeCounts, 54
plotWF, 56
plotwfOutput (plotWF), 56
predORF, 59
preprocessReads, 61
printParam, 62
printParam2, 63
projectInfo (SYSargsList-class), 93
projectInfo,SYSargsList-method

(SYSargsList-class), 93

readComp, 66
reference (sysargs), 86
reference,SYSargs-method

(SYSargs-class), 87
reference-methods (sysargs), 86

INDEX 119

removeParam2 (printParam2), 63
renameParam (printParam), 62
renameParam2 (printParam2), 63
renameStep<- (SYSargsList-class), 93
renameStep<-,SYSargsList-method

(SYSargsList-class), 93
renderLogs, 67
renderPlotwf (plotWF), 56
renderReport, 35, 68
renderWF (loadWorkflow), 41
replaceCodeLine,LineWise-method

(LineWise-class), 37
replaceCodeLine<- (SYSargsList-class),

93
replaceCodeLine<-,LineWise-method

(LineWise-class), 37
replaceCodeLine<-,SYSargsList-method

(SYSargsList-class), 93
replaceParam (printParam), 62
replaceParam2 (printParam2), 63
replaceStep<- (SYSargsList-class), 93
replaceStep<-,SYSargsList-method

(SYSargsList-class), 93
results (sysargs), 86
results,SYSargs-method (SYSargs-class),

87
results-methods (sysargs), 86
returnRPKM, 69
rmdPath (LineWise-class), 37
rmdPath,LineWise-method

(LineWise-class), 37
run_DESeq2, 75
run_edgeR, 76
runCommandline, 70
runDiff, 72
runInfo (SYSargsList-class), 93
runInfo,LineWise-method

(LineWise-class), 37
runInfo,SYSargsList-method

(SYSargsList-class), 93
runWF, 73

sal2bash, 77
sal2rmd, 79
SampleName (SYSargsList-class), 93
SampleName,SYSargs-method

(SYSargs-class), 87
SampleName,SYSargs2-method

(SYSargs2-class), 89
SampleName,SYSargsList-method

(SYSargsList-class), 93
SampleName-methods (sysargs), 86
scaleRanges, 80

SE (SYSargsList-class), 93
SE,SYSargsList-method

(SYSargsList-class), 93
SE<- (SYSargsList-class), 93
SE<-,SYSargsList-method

(SYSargsList-class), 93
seeFastq, 81
seeFastqPlot (seeFastq), 81
setlist (overLapper), 49
setlist,INTERSECTset-method

(INTERSECTset-class), 36
setlist,VENNset-method (VENNset-class),

109
setlist-methods (overLapper), 49
show,catDB-method (catDB-class), 6
show,EnvModules-method

(EnvModules-class), 19
show,INTERSECTset-method

(INTERSECTset-class), 36
show,LineWise-method (LineWise-class),

37
show,SYSargs-method (SYSargs-class), 87
show,SYSargs2-method (SYSargs2-class),

89
show,SYSargsList-method

(SYSargsList-class), 93
show,VENNset-method (VENNset-class), 109
showDF, 82
software (sysargs), 86
software,SYSargs-method

(SYSargs-class), 87
software-methods (sysargs), 86
SPRproject, 83
status (SYSargs2-class), 89
status,LineWise-method

(LineWise-class), 37
status,SYSargs2-method

(SYSargs2-class), 89
statusWF (SYSargsList-class), 93
statusWF,SYSargsList-method

(SYSargsList-class), 93
stepName (SYSargsList-class), 93
stepName,LineWise-method

(LineWise-class), 37
stepName,SYSargsList-method

(SYSargsList-class), 93
stepsWF (SYSargsList-class), 93
stepsWF,SYSargsList-method

(SYSargsList-class), 93
subset (SYSargsList-class), 93
subset,SYSargsList-method

(SYSargsList-class), 93

120 INDEX

subsetParam (printParam), 62
subsetWF, 84
symLink2bam, 85
sysargs, 86
sysargs,SYSargs-method (SYSargs-class),

87
SYSargs-class, 87
sysargs-methods (sysargs), 86
sysargs2 (SYSargs2-class), 89
sysargs2,SYSargs2-method

(SYSargs2-class), 89
SYSargs2-class, 89
SYSargsList, 34, 35, 39, 92
sysargslist (SYSargsList-class), 93
sysargslist,SYSargsList-method

(SYSargsList-class), 93
SYSargsList-class, 93
systemArgs, 99
systemPipeR-package, 3

targets (SYSargs2-class), 89
targets,SYSargs2-method

(SYSargs2-class), 89
targets.as.df, 100
targets.as.list (targets.as.df), 100
targets_connection (SYSargsList-class),

93
targets_connection,SYSargsList-method

(SYSargsList-class), 93
targetsheader (SYSargsList-class), 93
targetsheader,SYSargs-method

(SYSargs-class), 87
targetsheader,SYSargs2-method

(SYSargs2-class), 89
targetsheader,SYSargsList-method

(SYSargsList-class), 93
targetsheader-methods (sysargs), 86
targetsin (sysargs), 86
targetsin,SYSargs-method

(SYSargs-class), 87
targetsin-methods (sysargs), 86
targetsout (sysargs), 86
targetsout,SYSargs-method

(SYSargs-class), 87
targetsout-methods (sysargs), 86
targetsWF (SYSargsList-class), 93
targetsWF,SYSargsList-method

(SYSargsList-class), 93
trimbatch, 101
tryCL (tryCMD), 102
tryCMD, 102
tryPath, 103

updateColumn<- (SYSargsList-class), 93
updateColumn<-,SYSargsList-method

(SYSargsList-class), 93
updateWF (loadWorkflow), 41

variantReport, 104
varSummary (variantReport), 104
vennlist (overLapper), 49
vennlist,VENNset-method

(VENNset-class), 109
vennlist-methods (overLapper), 49
vennPlot, 106
VENNset-class, 109
viewEnvir (SYSargsList-class), 93
viewEnvir,SYSargsList-method

(SYSargsList-class), 93

wf (SYSargs2-class), 89
wf,SYSargs2-method (SYSargs2-class), 89
write_SYSargsList, 113
writeParamFiles (createParam), 15
writeTargets, 110
writeTargetsout, 111
writeTargetsRef, 112

yamlinput (SYSargsList-class), 93
yamlinput,SYSargs2-method

(SYSargs2-class), 89
yamlinput,SYSargsList-method

(SYSargsList-class), 93
yamlinput<- (SYSargsList-class), 93
yamlinput<-,SYSargs2,ANY,ANY-method

(SYSargs2-class), 89
yamlinput<-,SYSargs2-method

(SYSargs2-class), 89
yamlinput<-,SYSargsList-method

(SYSargsList-class), 93

	systemPipeR-package
	addAssay-methods
	alignStats
	catDB-class
	catmap
	check.output
	clusterRun
	config.param
	configWF
	countRangeset
	createParam
	cwlFilesUpdate
	EnvModules-class
	evalCode
	featureCoverage
	featuretypeCounts
	filterDEGs
	filterVars
	genFeatures
	GOHyperGAll
	importWF
	INTERSECTset-class
	LineWise-class
	listCmdTools
	loadWorkflow
	mergeBamByFactor
	moduleload
	olBarplot
	olRanges
	output_update
	overLapper
	plotfeatureCoverage
	plotfeaturetypeCounts
	plotWF
	predORF
	preprocessReads
	printParam
	printParam2
	readComp
	renderLogs
	renderReport
	returnRPKM
	runCommandline
	runDiff
	runWF
	run_DESeq2
	run_edgeR
	sal2bash
	sal2rmd
	scaleRanges
	seeFastq
	showDF
	SPRproject
	subsetWF
	symLink2bam
	sysargs
	SYSargs-class
	SYSargs2-class
	SYSargsList
	SYSargsList-class
	systemArgs
	targets.as.df
	trimbatch
	tryCMD
	tryPath
	variantReport
	vennPlot
	VENNset-class
	writeTargets
	writeTargetsout
	writeTargetsRef
	write_SYSargsList
	Index

